

Dr Rory Spencer - Applied Materials Technology UKAEA

UK Atomic Energy Authority (UKAEA)

Mission:

"To lead the delivery of sustainable fusion energy and maximise the scientific and economic benefit"

Activities:

Operate fusion devices (MAST-U, ex JET)
Research (plasma physics, materials)
Develop components for future devices
Contribute to EUROFusion program
Robotics
High performance computing

Fusion Energy

UK Atomic Energy Authority

In Space:

Intense heat & pressure due to gravity ~15 million K (core), 5,500K (surface)

On Earth:

Need plasma temp. of ~150 million K + pressure (confinement)

Fusion Reactors (Tokamaks)

A donut shaped magnetic bottle for confining and heating plasma to create fusion

JT60-SA

High power High utilisation New components Net energy Power generation

2040s

Materials Challenges

New Materials

RAFM Steels
ODS Steels
Exotic Metals
Ceramics & Composites

New Processes

Additive Manufacturing Hot Isostatic Pressing Field-Assisted Sintering

Design Data

Existing Design Codes
ASME BPVC
R5/6
RCC-MRx

Fusion Design Codes
ITER SDC-IC
DEMO DC

Failure Modes

Plastic Collapse
Fatigue
Ratchetting
Creep
Local Failure

Fast Fracture

Creep-Fatigue

Temperature

Needs data over

Stress

Irradiation Damage

For Eurofer97 this has taken >20 years

Eurofer97 Yield Strength vs temperature (unirradiated) Lucon & Vandermeulen 2009

Why focus on creep?

Creep is a key failure mode

Higher temperatures, higher efficiency, worse creep

Development of new radiation tolerant, creep-resistant steels

Why Materials Testing 2.0?

Material Testing 2.0 uses **complex tests**, **full-field measurements** and **inverse identification** to determine constitutive models.

Creep tests are long – 1,000's of hours, machines, time & resources to do them are expensive.

Can we use the Materials Testing 2.0 philosophy to get more data from a reduced number of tests?

Does data from MT2 tests match that from MT1 tests?

Exploiting MT2: Test Design

In MT2 the test design space is now **infinite**, so how do you choose a suitable geometry? From [1]:

Intuition

What do we think would work?

Strain State

What gives the best spread of strain states?

Identification Quality

What gives the least uncertainty on outputs?

Full Simulation

What is the effect of the measurement system?

Viscoplastic Model Specimen [2]

Anisotropic Model Specimen [3]

Anisotropic Elasticity Test [4]

^[1] F. Pierron, M. Grediac, Strain 2020, e12370. 10.1111/str.12370,

^[2] E. M. C. Jones, J. D. Carroll, K. N. Karlson, S. L. B. Kramer, R. B. Lehoucq, P. L. Reu, D. Z. Turner, Comput. Mater. Sci. 2018, 152, 268.

^[3] J. Aquino, A. G. Andrade-Campos, A. Gil, J. M. P. Martins, S. Thuillier, Strain 2019, 55, e12313.

^[4] F. Pierron, G. Vert, R. Burguete, S. Avril, R. Rotinat, M. R. Wisnom, Strain 2007, 43, 250.

'Stress State' Optimisation Strategy

Material & Uniaxial Tensile Tests

OFHC Cu – Rolled Sheet, ½ Hard Proposed for interlayer between CuCrZr pipes and W armour

Temperature [C]	Elastic Modulus [GPa]	Yield Strength [MPa]	Tensile Strength [MPa]	'Uniform Elongation'
20	110	160	258	0.125
260	98	122	122	0.009

Based on ASTM-E8

MT2 Geometry

MT2 Specimen

MT2 tapered specimen geometry Load - 750N Approx Stress range 70-125MPa Temp ~ 300°C

Uniaxial Specimens

ASTM E8 type specimen, ~20% subsize Loads – 800, 1000, 1200N Stresses – 80, 100, 120MPa Temp ~ 300°C

Experimental Setup

MT1 Creep Tests

X Axis

MT2 Specimen Results

MT1-2 Comparison

Modelling

- Isotropic model (neglect anisotropy)
- Unified Viscoplasticity with Damage
- Damage degrades elastic stiffness
- Implemented in MOOSE Open-Source FE Solver

Strain Partitioning

$$\varepsilon = \varepsilon_{el} + \varepsilon_{vp}$$

Rate Sensitivity / Viscoplasticity
$$\dot{\varepsilon}_{vp} = \alpha \sinh \beta \left(\frac{\sigma}{1 - \omega} - R - \sigma_y \right)$$

Voce Strain Hardening

$$R = \sigma_{s} (1 - e^{b\varepsilon_{vp}}) + h\varepsilon_{vp}$$

Leckie & Hayhurst Damage

$$\omega = 1 - \left[1 - \frac{t}{\left(\frac{\sigma}{A}\right)^{-\zeta} (1 + \phi)^{-1}}\right]^{\frac{1}{1 + \phi}}$$

UK Atomic

Energy Authority

Modelling ResultsMT2

120MPa Model

80MPa Model

Uniaxial

100MPa Model

- Agreement is promising, given lack of anisotropy
- Experimental temperature inaccuracy

Identification Quality Optimisation

Identification Quality Grid Search

Towards Full Simulation

Conclusions & Outlook

Tested novel geometry & uniaxial specimens at high temperature with similar creep stresses

Demonstrated multiple creep curves from one specimen at high temperature

Fitted isotropic model to data and demonstrated reasonable agreement with experiment

Going forward:

Improved design optimisation

Targeting Gr91 steel 600-700°C

Data from uniaxial and MT2 geometries

Thank you Any questions?

Contact: rory.spencer@ukaea.uk