

Using FEMU for identifying plastic material behavior of heavy gauge steel

S. Coppieters, Y. Zhang, A. Lambrughi Elooi Lab

Department of Materials Engieering, KU Leuven

Material Twin Bridge*

MT1.0 facilitates understanding material behavior

^{*} After an idea of prof. M. Halilovič

Material Twin Bridge

MT2.0 facilitates crossing the material twin bridge faster/better

Material Phenomenology: MT1.0

MT1.0

Tensile testing using combined IRT-DIC

Material Phenomenology: MT1.0

MT1.0

Evolution of anisotropy parameters

Onset of damage in relation to strain rate and temperature

Material Phenomenology

More advanced experiments enabling to probe a specific material response

MT1.0

Free-End Torsion Test (FET)

DIC-System
Outer clamping
Inner clamping
Specimen
Servomotor
Torque sensor
Worm gear
Bevel gear

The in-plane torsion test (IPPT)

Material Twin Bridge

MT1.0 blueprint of material behavior

Real Material

Behavior

MT2.0 crossing the material twin bridge faster/better (for a specific material response in relation to an application)

Material Phenomenology: anisotropic yielding

Material S700MC, nominal thickness 12 mm

Known: average strain hardening behavior in RD

Unknown: 5 anisotropy parameters of 3D Hill48 (G + H = 1)

$$\sigma_{eq}^2 = F(\sigma_{22} - \sigma_{33})^2 + G(\sigma_{33} - \sigma_{11})^2$$

$$+ H(\sigma_{11} - \sigma_{22})^2 + 2L\sigma_{23}^2 + 2M\sigma_{31}^2 + 2N\sigma_{12}^2$$

FEMU: Strain-based cost function

$$C(\mathbf{p}) = C(\mathbf{p})^{Front} + C(\mathbf{p})^{side}$$

$$\mathcal{C}(oldsymbol{p})^{side} = \sum_{i=1}^{m} \sum_{j=1}^{n_i} \delta \left[\left(rac{\epsilon_{yy,ij}^{exp} - \epsilon_{yy,ij}^{num}}{\epsilon_{yy,RMS,i}^{exp}}
ight)^2 + \left(rac{\epsilon_{zz,ij}^{exp} - \epsilon_{zz,ij}^{num}}{\epsilon_{zz,RMS,i}^{exp}}
ight)^2 + \left(rac{\epsilon_{yz,ij}^{exp} - \epsilon_{yz,ij}^{num}}{\epsilon_{yz,RMS,i}^{exp}}
ight)^2
ight]$$

Shape optimization: maximizing strain heterogeneity

Stereo DIC front

Stereo DIC side

DVT
Stereo DIC front + Stereo DIC side

Shape optimization: maximizing strain heterogeneity

- Computationally heavy for thick specimens.
- Identifiability cannot be guaranteed.
- Material orientation should be a design variable.
- Spatial convergence of the measurement method?

Identifiability analysis: maximizing parameter (set) identifiability

Single complex specimen approach

Two-specimen approach

Identifiability analysis: maximizing parameter identifiability

Identifiability analysis

Two-specimen approach

MT2.0: Specimen design - DVT

Digital Virtual Twin to evaluate FEMU

Single complex specimen approach

Metrological aspects

MT2.0: Specimen Design - DVT

-Reference

RD1+TD1 RD2+TD2

Digital Virtual Twin

MT2.0: Experimental validation

MT2.0: Experimental validation – "Reference" data

MT2.0: Experimental validation – "Reference" data

MT2.0: Experimental validation – "Reference" data

Reference (Hill48-σ) 0.2 Reference (Hill48-r) ADY ADY ADY ADY ADY ADY DIC

MT2.0

MT2.0: Experimental validation – Robustness

MT2.0: Experimental validation – Robustness

MT2.0: Experimental validation – Robustness

MT2.0: Experimental validation – Material model error

Conclusions MT2.0 for heavy gauge steel

MT2.0 crossing the material twin bridge faster/better

Conclusions MT2.0 for heavy gauge steel

- Simplicity of the specimen is key¹: rather two simple specimens than one very complex.
- An automated design strategy² is still lacking for thick heavy gauge steel.
- Material model selection³ is an open question, there are options⁴ but therefore FEMU methods need to be accelerated.
- DVT is crucial tool (extension to IRT is under way⁵).
- Integrated MT2.0 solutions are required to gain industrial relevance⁶.

⁴ PhD Amar Peshave

² PhD Mafalda Gonçalves

⁵ PhD Alessandro Lambrughi

³ PhD Mariana Conde

¹ PhD Yi Zhang

• Thank you!

Identifiability analysis: maximizing parameter identifiability

Identifiability analysis

Two-specimen approach