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Who we are…

Simulations of technological processesProduct development & optimization

Material modelling & characterization Numerical methods & implementations of material models

deep drawing, stamping
3D printing

blanking

- metals

- polymers

- composites
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A history of MT 2.0…
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MT 1.0 vs MT 2.0 in a nutshell

Material testing 1.0 (MT 1.0) vs Material testing 2.0 (MT 2.0):

Making the material characterization efficient, reliable and robust!
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Making the material characterization 

efficient, reliable and robust!

𝜎𝑖𝑗𝜀𝑖𝑗
model parameters

kinematic consistency

𝐹𝑖𝑗𝑢𝑖

equilibrium

DIC

inversely identified by VFM

CONSTITUTIVE MODEL

time consuming stress reconstructionBOTTLENECK
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Stress reconstruction algorithm: a 

bottleneck of parameter identification

• Backward Euler (BE)

➢ implicit integration scheme

➢ consistency condition fulfilled

➢ stable

➢ solution of system of nonlinear algebraic equations is required

➢ iteration procedure in each increment is needed
➢ difficult implementation of complex constitutive models

• Next Increment Corrects Error (NICE)

➢ explicit integration scheme

➢ no drifting from the consistency condition

➢ stable

➢ fast, efficient

➢ simple implementation

NICE: an explicit numerical scheme for integration of constitutive equations, which efficiently 

combine the implementation simplicity of the forward-Euler scheme and accuracy of the

backward-Euler scheme
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NICE

A class of elastic-plastic constitutive models (system of DAE):

+ loading/unloading conditions

( )Y 1, , , , 0ij p    =  =K

( )e pd d d dij ijkl kl ijkl kl klC C   = = −

pd dij

ij


 




=



p p

Y eqd dij ij   =

( )
 

p

Y 1d d , , , , ,d ;

1,2, ,

r r ij p ij

r p

      =



K

K

algebraic constraint/equation:

(consistency condition)

differential (evolution) equations:

(Hook’s law)

(flow rule)

(uniaxial-multiaxial plastic work 

 equivalence)

(additional state variables are supposed 

 to follow specified differential laws)
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NICE scheme

NICE (Next Increment Corrects Error) scheme:

Taylor power series expansion of the 

consistency 

condition on all unknown state variables 

treated according to the forward-

Euler approach 

Φ = Φ 𝚺 = 0

algebraic constraint/equation:

differential (evolution) equations:

0n +  =

How can we fulfill the algebraic constraint with explicit scheme?

Δ𝚺 = 𝑪 ∙ Δ𝜺 − 𝑹 Δ𝜆 Δ𝚺 = 𝑪 ∙ Δ𝜺 − 𝑹𝑛 Δ𝜆
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NICE scheme

NICE (Next Increment Corrects Error) scheme:

NICE scheme:

explicit expression of 
plastic multiplier 

Forward-Euler:

explicit expression of 
plastic multiplier 

Φ𝑛 + ΔΦ = Φ𝑛 + ቤ
𝜕Φ

𝜕𝚺
𝑛

∙ Δ𝚺 = 0

Δ𝚺 = 𝑪 ∙ Δ𝜺 − 𝑹𝑛 Δ𝜆

ΔΦ = ቤ
𝜕Φ

𝜕𝚺
𝑛

∙ Δ𝚺 = 0

Δ𝚺 = 𝑪 ∙ Δ𝜺 − 𝑹𝑛 Δ𝜆

Δ𝜆 =

Φ𝑛 + ฬ
𝜕Φ
𝜕𝚺 𝑛

∙ 𝑪 ∙ Δ𝜺

ฬ
𝜕Φ
𝜕𝚺 𝑛

∙ 𝑹𝑛

Δ𝜆 =

ฬ
𝜕Φ
𝜕𝚺 𝑛

∙ 𝑪 ∙ Δ𝜺

ฬ
𝜕Φ
𝜕𝚺 𝑛

∙ 𝑹𝑛
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Example: loading of membrane element

Simple mathematical example: 2-D loading of membrane

2 2

1 2
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Example: loading of membrane element

Simple mathematical example: 2-D loading of membrane

algebraic constraint/equation:

differential (evolution) equations: Δ𝜆 =

Φ𝑛 + ฬ
𝜕Φ
𝜕𝚺 𝑛

∙ 𝑪 ∙ Δ𝜺

ฬ
𝜕Φ
𝜕𝚺 𝑛

∙ 𝑹𝑛

Φ𝑛 + ΔΦ = Φ𝑛 + ቤ
𝜕Φ

𝜕𝚺
𝑛

∙ Δ𝚺 = 0

Δ𝚺 = 𝑪 ∙ Δ𝜺 − 𝑹𝑛 Δ𝜆

Δ𝜺 =
Δ𝜀1

Δ𝜀2
; Δ𝚺 =

Δ𝜎1

Δ𝜎2

Δ𝜎𝑌

; 𝑪 =
𝐸 0
0 𝐸
0 0

; 𝑹 =
2𝐸𝜎1𝜎𝑌

−2

2𝐸𝜎2𝜎𝑌
−2

−𝐻
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Example: loading of membrane element

Simple mathematical example: 2-D loading of membrane

Next Increment Corrects Error (NICE)

➢ explicit integration scheme

➢ no drifting from the consistency condition

➢ stable

➢ fast, efficient

➢ simple implementation

    substepping for large increments since the error 

can get large (implicit FEM)


Forward EulerNICE
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Application to DIC and VFM

Boosting the efficiency of non-linear VFM by implementation of NICE

user interface: measure and postprocess full-field test data, apply boundary cond., 
material model, choose parameters, optimization algorithm, initial conditions, few 
details and run!    
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Effect of temporal down-sampling

Image acquisition for DIC

n=4n=1 n=2 n=3 n=5 n=6n=0 n=7 n=8 n=9

No. of frames

Linear elasticity

5th  MPS - Material Testing 2.0 for Thermomechanical Characterization of High Strength Steels

The user has control on frame acquisition rate improved efficiency?
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n=4n=1 n=2 n=3 n=5 n=6n=0 n=7 n=8 n=9

Linear elasticity

5th  MPS - Material Testing 2.0 for Thermomechanical Characterization of High Strength Steels

Effect of temporal down-sampling

No. of frames

The user has control on frame acquisition rate improved efficiency?

Image acquisition for DIC
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Image acquisition for DIC

n=4n=1 n=2 n=3 n=5 n=6n=0 n=7 n=8 n=9

Linear elasticity ✓

5th  MPS - Material Testing 2.0 for Thermomechanical Characterization of High Strength Steels

Effect of temporal down-sampling

No. of frames

The user has control on frame acquisition rate improved efficiency?
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Effect of temporal down-sampling

n=4n=1 n=2 n=3 n=5 n=6n=0 n=7 n=8 n=9

Linear elasticity ✓

Plasticity 

results: path dependent!

5th  MPS - Material Testing 2.0 for Thermomechanical Characterization of High Strength Steels

No. of frames

The user has control on frame acquisition rate improved efficiency?

Image acquisition for DIC
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Effect of temporal down-sampling

FEA results for the open hole test

More info: Halilovič, Starman, Coppieters: Computationally Efficient Stress Reconstruction from Full-field Strain Measurements, Computational Mechanics, 2024

von Mises model, linear hardening
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Effect of temporal down-sampling

More info: Halilovič, Starman, Coppieters: Computationally Efficient Stress Reconstruction from Full-field Strain Measurements, Computational Mechanics, 2024

FEA results for the open hole test

Equidistant incrementation

BE

NICE

B
E

N
IC

E
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Effect of temporal down-sampling

More info: Halilovič, Starman, Coppieters: Computationally Efficient Stress Reconstruction from Full-field Strain Measurements, Computational Mechanics, 2024

Stress reconstruction efficiency

Theoretically: using NICE, there is no need 

for down-sampling to save CPU time.

BE

NICE



21

Robustness

More info: Halilovič, Starman, Coppieters: Computationally Efficient Stress Reconstruction from Full-field Strain Measurements, Computational Mechanics, 2024

The effect of strain reconstruction on stress integration

BE

NICE

BE

NICE
BE

NICE
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Application to VFM

• Material model: Swift hardening + 
YLD2000-2d 

• Identification of material 
parameters:

•  1, 2, 3, 4, 5, 6, 7, 8, m

• Virtual experiment via biaxial test

GOAL: Implementation of NICE into MatchID via CMAT module

• identification of plastic anisotropy using YLD2000-2d model 
parameters using perforated biaxial test 

• monitor efficiency, accuracy and robustness
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Application to VFM

Efficiency: the NICE algorithm is faster in comparison to BE, depending on a number of frames, 

parameters and iterations

BE

NICE

number of frames

C
P

U
 t

im
e
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Conclusions

Findings:

• In plasticity, temporal down-sampling of the DIC results increases inaccuracy of results

• The NICE method enables efficient stress reconstruction for highly nonlinear problems

• Using NICE, there is no reason to perform down-sampling to save computational time

• The NICE algorithm was successfully implemented into MatchID via CMAT, and proven to be 

computationally efficient

• Using NICE computational efficiency can be increased → larger the number of stress 

reconstructions, larger the benefit of NICE against BE

More info: 

Halilovič, Starman, Coppieters: Computationally Efficient Stress Reconstruction from Full-field Strain Measurements, 

Computational Mechanics, 2024

5th  MPS - Material Testing 2.0 for Thermomechanical Characterization of High Strength Steels
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Conclusions

5th  MPS - Material Testing 2.0 for Thermomechanical Characterization of High Strength Steels

Thank you for your attention
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