

Powering Innovation That Drives Human Advancement

Finite Element based inverse Material Calibration

Christian Ilg & André Haufe

DYNAmore

Data | Software | Engineering | Materials

- Founded in 2001 with headquarters in Stuttgart, Germany
- In total more than 160 people
- Aeronautical, civil and mechanical engineers, mathematicians, computer scientists, etc.
- Employees from 13 different countries
- Distribution and co-development of LS-DYNA
- Acquired by Ansys Inc. (USA) in January 2023

Crashworthiness: Where do we come from?

Rocket science for crash testing (around 1950)

FEM-Model of the 1970s simulated with LS-DYNA 9.70 in 2009 (Finite Elephant Method)

2024: X-ray during crash impact

Typical model size 20+Mio. elements

"Complex computational structural models, partially inspired by continuum mechanics." [M. Bischoff, 23.6.2023]

Crashworthiness: Where do we come from?

Typical crash/impact load cases and the evolution of anthropometric test devices (dummies)

What ensures predictiveness in crashworthiness?

Spatial discretization

Tesla Model3 "old" BIW (many parts + thousands of welds)

Tesla Model3 new BIW with megacasts (2 parts, way less connections)

Constitutive modelling and calibration

How can we ensure proper material data? (The idea of a Material Competence Center...)

Material Competence Center part of the Materials, Methods and Homologation Group part of the Global Automotive Crashworthiness Team part of part of Ansys Customer Excellence within Ansys

The Material Competence Center

Contact:
DYNAmore GmbH, an Ansys Company
David Koch
Kolumbusstraße 47
70771 Leinfelden-Echterdingen
david.koch@ansys.com

Christian Ilg

Vincent Suske

Fatih Kuzak

Werner Feix

Tobis Aubel Stefan Wacker

Testing services

- Tensile, compression, puncture, bending testing
- Static, dynamic, cyclic testing
- Component testing
- Sample processing and conditioning
- 3D-DIC measurement of the strain field

Benefits

- Parameter identification from a single source
- Minimize time and costs
- The LS-DYNA developer team is always available

Material Characterization

- LS-DYNA material model calibration for:
 Metals, polymers, glass, foams, and more
- Deformation behavior
 - Viscoelastic and visco-plastic
 - Isotropic and anisotropic
 - Tensile and compressive- asymmetry
- Damage and failure modelling
 - GISSMO (General Incremental Stress State dependent damage Model)
 - DIEM (Damage Initiation and Evolution Model)

Material models developed by Ansys/DYNAmore MCC

- Many of the material models in LS-DYNA have been developed by Ansys/DYNAmore researchers
- Parameter identification and calibration of respective models is our daily business
- The MCC offers a **one-stop-shop** for testing and calibration services to ensure accuracy of constitutive models

Methods – MCC

Glass model development

Glass:

- Improvements for *MAT_280 (glass model)
 - Nonlocal extensions unified in one model: Rate-dependent strength reduction in elements around cracks
 - Tests done at DYNAmore MCC to calibrate PVB interlayer & third party impact testing on windscreens.
 - Better agreement with tests (static & dynamic).

reduced

strength

Calibration of manufacturing process chain

Constitutive modelling **and** correlated spatial discretization is key for predictive crash-worthiness simulation.

Material card generation for small overlap

Investigations on instability, regularization, ...

Methods – MCC

Battery model development

Research projects

COMET K1 VII 3.04a (2021 - 2024)

- Ensuring System Reliability via Battery Cell Simulation
- Thermal and thermo-mechanical experiments on cell level
- Predict deformation, damage and failure behavior under mechanical load
- Development of a detailed simulation model of battery cells
- Derive homogenized macroscopic battery cell models based on the detailed simulation approaches
- Define criteria to assess critical and non-critical damage patterns
- Demonstration on 21700 battery cell in consumer products

T- PCCL

DYNA

40

Airbag fabric calibration

CbA/Homologation in R&D

New modelling techniques for fuell cells, batteries, H2-vessels.

New methods for homologation by analysis.
Accounting of CO2 footprint.

CbA/Homologation in early application...

Methods – MCC

Battery model development

Research projects

COMET K1 VII 3.04a (2021 - 2024)

- Ensuring System Reliability via Battery Cell Simulation
- Thermal and thermo-mechanical experiments on cell level
- Predict deformation, damage and failure behavior under mechanical load
- Development of a detailed simulation model of battery cells
- Derive homogenized macroscopic battery cell models based on the detailed simulation approaches
- Define criteria to assess critical and non-critical damage patterns
- Demonstration on 21700 battery cell in consumer products

T- PCCL

DYNA

40

Airbag fabric calibration

CbA/Homologation in R&D

New modelling techniques for fuell cells, batteries, H2-vessels.

New methods for homologation by analysis. Accounting of CO2 footprint.

CbA/Homologation at LS-DYNA Conference

Powering Innovation That Drives Human Advancement

Certification by Analysis: A discussion of solver requirements

Alexander Gromer & André Haufe

Classical Material Characterization

Introduction

- Classical scheme of characterizing the yield behavior of a material
 - Engineering stress-strain curve with a predefined reference length (here: $I_0 = 9$ mm)

Introduction

- Engineering stress-strain curves with a different reference/gauge lengths
 - Flow curve generated with the classical approach able to capture all the stress-strain curves?

Data which can be used from the experiment

Parametrization of the flow curve

Assuming isochoric behavior and calculation of the flow curve up to A_a

$$\sigma_y = \sigma_{eng}(1 + \varepsilon_{eng})$$

$$\varepsilon_{pl} = \ln(1 + \varepsilon_{eng}) - \frac{\sigma_{eng}}{E}$$

Extrapolation from A_q with Hockett-Sherby (or else)

$$\sigma_y(\varepsilon_{pl}) = A - B e^{(-c \varepsilon_{pl}^n)}$$

 C^1 -continuity at A_a :

>> Reduces two variables from the equation

Full Field Calibration

Introduction

■ FFC – Concept

Introduction

Example of data which can be used for the optimization (mini flat tensile test geometry)

Optimization setup

Optimization setup for parameter calibration in LS-OPT Up to 3 flow curves Setup Sampling Sampling **Enhanced Barlat** 7 vars, 13 d-opt designs 28 parameters Variables c and n for 0°, 45° and 90° w.r.t. the rolling yield 00 direction yield 45 vield 90 $-c_{00}, n_{00}$ Domain reduction Finish - c₄₅, n₄₅ (SRSM) ε_{pl} – c₉₀, n₉₀ Exponent of the yield surface m Multi-histories from ARAMIS via xml import Verification Termination criteria 1 design 15 iterations 35-30-Sim 00 Sim 45 Sim 90 18 pars, 9 hists, 9 resps 18 pars, 8 hists, 8 resps Force [kN] Optimization Curve matching between **Build Metamodels** 18 objectives 26 linear surfaces 0 constraints experimental and numerical data Longitudinal strain [-] Force vs. strain Force vs. strain Mapping of the facet mid-points from ARAMIS onto the FE-mesh **Ansys**

Optimization setup

Optimization setup for parameter calibration in LS-OPT Up to 3 flow curves Setup Sampling Sampling **Enhanced Barlat** 7 vars, 13 d-opt designs 28 parameters Variables c and n for 0°, 45° and 90° w.r.t. the rolling yield 00 direction yield 45 vield 90 $-c_{00}, n_{00}$ Domain reduction Finish - c₄₅, n₄₅ (SRSM) ε_{pl} $-c_{90}$, n_{90} Exponent of the yield surface m Multi-histories from ARAMIS via xml import Verification Termination criteria 1 design 15 iterations 35-30-Sim 00 Sim 45 Sim 90 18 pars, 9 hists, 9 resps 18 pars, 8 hists, 8 resps Force [kN] *** **Build Metamodels** 26 linear surfaces 10 for n Longitudinal strain [] $\sigma_y(arepsilon_{pl}) = A - B \, e^{(-c \, arepsilon_{pl})} \, .$ $\sigma_y(\varepsilon_{pl}) = A - B e^{(-\mathbf{c}\varepsilon_{pl}^n)}$ Mapping of the facet mid-points Number of iterations Number of iterations from ARAMIS onto the FE-mesh

Results: Experiment vs. Simulation

■ Comparison of difference of the strain fields for 0° – strains in x- and y-direction

Results: Experiment vs. Simulation

■ Difference of the experimental strain fields for 0° w.r.t simulated strains in x-direction

comp_00_sim_exp_x: discrepancy x-component (Dynamic Time Warping map)
Time = 75
Contours of diffx
min=-0.013953, at node# 1800
max=0.0214559, at node# 267

©2024 ANSYS, Inc.

Limitations

Possible reasons for deviations

- Constitutive model not rich enough to represent reality:
 - Varying R-value
 - Yield locus still too simple
 - 3D effects in thickness direction
 - No damage
 - Yield curve extrapolation too simple
- Strain rate dependency
- Evolution of temperature
- Noise from DIC
- DIC surface measurement (but shell assumptions)

Experimental Full Field Method

Idea

Other data that might be used for the optimization scheme (mini flat tensile test)

Tensile test with speckle pattern

Selection of 6 points on the evaluation area

Displacement in longitudinal direction which can be exported via xml

Idea

Optimization scheme

-Simulation

Boundary conditions:

- *BOUNDARY_PRESCRIBED_MOTION_NODE
 Boundary condition for all single nodes can be defined
- *DEFINE_CURVE Time vs displacement curves can be assigned to the boundary conditions

Use the information from x and y displacement of every time step/stage

Generate LS-DYNA input deck

Mesh and boundary conditions

Optimization parameters and targets for extended Barlat (MAT_36, HR=7)

Optimization parameters:

- Variables c and n for 0°, 45° and 90° w.r.t. the rolling direction
 - c₀₀, n₀₀
 - c_{45} , n_{45}
 - c_{90} , n_{90}
- Exponent of the yield surface m

Optimization targets:

Global force in different cross sections

and/or

 Splitting node to access and control local force equilibrium

Optimization setup [1]

Optimization setup for parameter calibration in LS-OPT (global and local criteria)

Early results

Optimization based on the global force

- Exemplified by one cut section of each simulation (0°, 45° and 90°)
- Baseline run (blue) vs final run (red) vs experimental data (black)

- Slight improvement of the resulting global forces
- But the results are still noisy

Early results

Optimization based on the <u>equilibrium of the nodal forces</u>

- Exemplified by one point of one simulation (0°)
- Baseline run (blue) vs final run (red)

- Slight improvement of the resulting global forces
- But the results are still noisy

Conclusion

- Results of the optimization methods are promising
- New specimen geometries with a wider range of triaxialities open up new possibilities

Limitations in the current setup:

- Noise of the test data
- Displacements in thickness direction were neglected (i.e. projection of the optical measurement in shell mid-plane needed and/or higher order shell formulation)
- Improve spatial discretization
- We need to tackle strain rate effects and heat release in localization areas.

Outlook

- Use more options/enhance the material model:
 - Shear and biaxial flow curves
 - Definition of r-values vs. plastic strain
 - Go into 3D for higher order shells
- Filtering of the test data
 - Mapping on a regular mesh
 - Elimination of the ground noise
 - Merging of data from several tests (increase sample size)
- Comparison with a conventionally calibrated material card using a component test
- Combine the method with DVC (for respective materials)

Think also outside of metallic materials...

Ansys

