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Introduction

• FEA modelling for predictive purposes;
• Material behaviour is generally made using 

differential constitutive equations;
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• FEA modelling for predictive purposes;
• Material behaviour is generally made using 

differential constitutive equations;
• These models are constrained by their 

mathematical formulation;
• These models require painful calibration; 

Challenges for successful (precise) modelling?



Introduction: success of the material modelling

• Introduction
• Success of the material modelling

Quality/quantity of the reference 
(observ. experimental)

Constitutive model
(formulation)

Inverse methodology
(calibration process)

Success
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Challenges for AI in material modelling?



Opportunities of ML in material modelling

Parameter 
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ML fully replaces analytical 
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enhancing known knowledge



Opportunities of ML in material modelling

• Parameter identification: create the inverse model



Opportunities of ML in material modelling

• Fully implicit ML material model: ML fully replaces analytical models

Information concerning the material behaviour



Opportunities of ML in material modelling

• Constitutive model corrector: enhancing known knowledge



Fully implicit ML material model: 

Can a ML fully replace analytical models?

Data-driven material model



ML fully replaces analytical models

Non-constrained by their 
mathematical formulation



Material models: are data-driven models the solution?

Hybrid models

Flexibility dealing larger volumes of information

Hybrid models enhance/correct well-known existing 

models
Implicit models

Neural networks partially/fully replace the material 

constitutive model

Predictions directly from data; no prior assumptions 

on yield criteria, hardening law, etc.

σ = 𝐸 ε𝑡 − ε𝑣𝑝

ሶε𝑣𝑝

=
σ − χ − 𝑅

𝐾
⋅ 𝑠𝑔𝑛 σ − χ

ሶχ = 𝐻 ⋅ ሶε𝑣𝑝 − 𝐷 ⋅ χ ሶε𝑣𝑝

ሶ𝑅 = ℎ ⋅ ሶε𝑣𝑝 − 𝑑 ⋅ 𝑅 ሶε𝑣𝑝

𝜀(𝑡)

𝜀(𝑡 − 1)

𝐹(𝑡 − 1)

𝜎(𝑡)

ANNs provide a radically different approach to the field:
• powerful function approximators
• implicitly learn constitutive relations from data
• no assumptions on mathematical formulation
• fast computation times



ANNs: main issues in material modelling

• Interpretability:
• ANNs are black-boxes: 

• How does the model arrive at such predictions?
• What’s the relationship between the inputs and outputs?
• Does this relationship hold on a physical sense?

• Wide solution space:
• Large number of possible solutions
• Spurious predictions that do not comply with fundamental physical laws

• ANN and other ML models are hungry for data:
• A large set of data is generally required for a precise training 

• ANN are made for labelling data training:
• However, the output of a model is not an observable feature



ANNs – main issues in material modelling

• The vast majority of the approaches documented in the literature for implicit (data-
driven) constitutive modelling consists of feeding the ANN with paired data (usually, stress 
and strain) during the training process in order to assimilate the material behavior. 



Feeding the ANN with paired labelled data

Back 
Stress

Drag 
Stress

Viscoplastic 
Strain

Stress Back 
Stress rate

Drag 
Stress rate

Viscoplastic
Strain rate

Simple ANN
Analytical Chaboche
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ANNs – main issues in material modelling

The vast majority of the approaches for implicit (data-driven) 
constitutive modelling consists of feeding the ANN with 
paired data (usually, stress and strain) during the training 
process in order to assimilate the material behavior. 

…
The process requires copious amounts of data, and 
obtaining comprehensive stress-strain relationships 
while relying on the standard simple mechanical 
tests poses a great challenge.

DIC technique can provide large amount of data, 
however, stress is not provided (the output of 
labelled data).



Implicit data-driven constitutive modelling

Direct training

• Common approach in the literature

• Data numerically generated

• Labelled data pairs (stress-strain)

• Easy to train with a ground-truth
value

• Variables not always obtainable in a
real experimental setting

Indirect training

• Not widely used

• Numeric or full-field data

• Relies only on measurable data
(e.g., displacements, global force)

• Variable to predict is indirectly
obtained from measurable or
intermediate variables

• Harder to train



Solution: learning from Material testing 2.0

Material 
Testing 
2.0

ANN 
modelling 

technology

Identification 
technology



Implicit data-driven constitutive modelling

R. Lourenço et al. An indirect training approach for implicit constitutive modelling using recurrent 
neural networks and the virtual fields method, Computer Methods in Applied Mechanics and 
Engineering,, 425:116961, 2024,, https://doi.org/10.1016/j.cma.2024.116961.



Learning curves 

R. Lourenço et al. An indirect training approach for implicit constitutive modelling using recurrent neural networks and the virtual fields method, Computer Methods in Applied Mechanics and Engineering,, 
425:116961, 2024,, https://doi.org/10.1016/j.cma.2024.116961.

Learning from a single test (with multiple loads)



Learning curves 

R. Lourenço et al. An indirect training approach for implicit constitutive modelling using recurrent neural networks and the virtual fields method, Computer Methods in Applied Mechanics and Engineering,, 
425:116961, 2024,, https://doi.org/10.1016/j.cma.2024.116961.

(a) the Dir-RNN model and (b) the Ind-RNN model based on the VFM



Implicit data-driven constitutive modelling

Results
ux: 15 mm 
uy: 15 mm
last stage



Implicit data-driven constitutive modelling

R. Lourenço et al. An indirect training approach for implicit constitutive modelling using recurrent neural networks and the virtual fields method, Computer Methods in Applied Mechanics and Engineering,, 
425:116961, 2024,, https://doi.org/10.1016/j.cma.2024.116961.

Direct training Indirect training



Implicit data-driven constitutive modelling

R. Lourenço et al. An indirect training approach for implicit constitutive modelling using recurrent neural networks and the virtual fields method, Computer Methods in Applied Mechanics and Engineering,, 
425:116961, 2024,, https://doi.org/10.1016/j.cma.2024.116961.

FEA implementation as UMAT (Abaqus)



Implicit data-driven constitutive modelling

Uniaxial tensile and shear strain-stress curves. Comparison between the FEA solution 
based on the Swift’s law and the UMAT implementation of the RNN model



Implicit data-driven constitutive modelling

Training NN-based constitutive models using data is not sufficient.

Extra information related to the physics behind the problem need to be 
enforced.

Model can learn new information that is usually not possible to learn with training 
data by using some laws of physics as constraints
(Physics informed neural networks)

Advantages of physics-based constraints
• Improved accuracy and stability
• Reduction in data requirements
• Increases trustworthiness
• Prevention of non-physical predictions



Implicit data-driven constitutive modelling

Learning 
basic 

physics



Implicit data-driven constitutive modelling

Time-What?



Implicit data-driven constitutive modelling

Example: Comparison of Constraints

Data loss →

Data loss + 
Plastic power →

Example for one integration point



data-driven modelling: validation procedure

1. Error statistics 2. Validation database

3. Validation KPI
4. UMAT implementation: FEA 
results for classical tests

The ‘RAF’ 
(Resconstructured axial force)

A. Peshave, F. Pierron, P. Lava, D. Moens, D. 
Vandepitte, Strain 2024, e12473. 

https://doi.org/10.1111/str.12473



data-driven modelling: validation procedure

1. Error statistics



data-driven modelling: validation procedure
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data-driven modelling: validation procedure

3. Validation KPI



data-driven modelling: validation procedure

4. UMAT implementation: FEA results 
for classical tests



Conclusion



Conclusion

Major evolutions have been made for 
data-driven constitutive modelling

However, the is still a long way to go



Closing remarks
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