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Abstract. In the current work, displacement and global force data are used to feed and indirectly train

an ANN to predict the stress state of a material. An experimental test is recreated numerically in order

to obtain displacement and global force data for different load distributions, i.e. obtaining synthetic

data using a virtual experiment. The strain from the current and previous time increments are indirectly

obtained from the corresponding displacements and used as inputs for the ANN to predict the current

state of stress. Training is carried out without stress labels to compute the loss. Instead, the local and

global equilibrium conditions corresponding to the application of the Virtual Fields Method (VFM)

to the physical model are employed to compute the loss and update the network parameters, until the

predicted stress state is accurate.

Introduction

Constitutive laws are established according to first-principle assumptions compiled in a set of math-

ematical expressions, supported by a number of empirical parameters that need to be calibrated via

experimentation. Materials with complex behaviors require complex models with a higher number of

parameters, resulting in expensive and time-consuming experimental campaigns [1].

Artificial Neural Networks (ANNs) have the potential to provide a radically different approach to

the field, as they are able to implicitly learn patterns directly from data, without having to postulate

a mathematical formulation or identify parameters [2, 3]. Several successful applications of ANNs

targeted at the implicit modelling of material behavior have been reported in the literature (e.g. [4–6]

among others). However, the vast majority of the approaches rely on training the ANNs with paired

data, usually stress-strain, from numerically generated datasets. However, with numerical generated

data all variables are easily accessible, while in a real experimental setting certain variables (e.g.

stress) are not directly measured, only the displacements and global force are measurable quantities

and should be used to indirectly train the ANN model.

In this work, displacement and global force data are used to indirectly train an ANN model to

predict the stress state of a material. A virtual experiment was recreated in order to obtain the necessary

variables considering different load distributions. The strains corresponding to two subsequent time

increments and used as inputs for an ANN to predict the current state of stress. Training is carried

out without stress labels. Instead, the local and global equilibrium conditions corresponding to the

application of the Virtual Fields Method (VFM) [1] to the physical model are employed to compute

the loss and update the network parameters. Hence, the main objective of this paper is to show the

VFM as capable and viable method to indirectly train ANNs for implicit constitutive modelling.
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Fundamentals on ANNs

Direct training. Feedforward neural networks (FFNNs) are the most commonly used topology, con-

sisting of: an input layer, an output layer and one or more hidden layers, which provide complexity

for non-linear problems [7]. Considering the generic FFNN, shown in Fig. 1, the dimensions of the

vector x dictate the number of neurons in the input layer [7]. These inputs are subsequently mapped to

the next layers, triggering the respective activations {0 (1)1 , ...0
(:)
< } that form a vector a(:) ∈ R<. The

activation potential, from layer (:−1) to layer : , is controlled by a matrix of parametersW(:) ∈ R<×=
and computed as the sum of the weighted output values {G1, . . . G=} of all incoming connections. A

function 6(·) is then applied to this weighted sum, leading to the activations of the : th layer being

computed as [7]:

a(:) = 6
(
W(:)x + b(:)

)
. (1)

A set of biases b ∈ R< is added as the weight of a link that always transmits a value of 1. During

training, the network learns the parameters (W, b) that minimize a given loss function. A standard

supervised learning procedure uses labeled datasets, where each training sample is associated with an

observed value [8]. In the case of implicit constitutive modelling, usually one seeks to predict the

stress components, therefore, stress labels are fed to the network in order to compute the cost, such

that [4]:

! (2, 2̂) =
1
=

=∑
8=0

(28 − 2̂8)2
, (2)

where = is the total number of training instances,2 is the vector of observed values and 2̂ the vector of

predictions. There is a wide variety of optimization algorithms available to minimize the cost function.

A gradient-based algorithm is normally used to minimize the cost and drive the parameters update,

such that [7, 9]:

W(:) BW(:) − U m!

mW(:) , (3)

b(:) B b(:) − U m!

mb(:) , (4)

with U being the learning rate, controlling how quickly the model adapts to the problem [9]. The

partial derivatives of the loss with respect to the parameters can be efficiently computed by an error

backpropagation.
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Fig. 1: Multi-layer feedforward neural network with one output and = inputs.
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Indirect training. Implicit constitutive modelling based on ANNs mostly relies on paired data, with

the strain and stress tensors usually being fed to the system in order to learn the material behavior.

However, variables such as stress cannot be directly measured from experiments [10]. Therefore, the

training process must be carried out indirectly, using only measurable data. Some authors recently

reported different approaches to tackle this issue. For example, Xu et al [11] presented a method for

an ANN to model viscoelasticity, based on displacement data, using partial differential equations to

introduce the physical constraints during training, and Liu et al [10] addressed the issue via coupling

the ANN model with the Finite Element Method (FEM) to learn constitutive laws based on force and

displacement data (Fig. 2). In the latter approach, the physical constraints are implicitly imposed as

the network’s outputs must go through the FEM to generate correct input data.

FEM ANN Update 
 k

Update 

Minimize

1. Assemble global stiffness K using element k based on ANN

2. Solve the displacements:

3. Compute strains:

Fig. 2: Coupled ANN-FEM model approach presented by Liu et al. Adapted from [10].

In the current work we propose a disruptive approach in comparison to Liu et al [10], making use

of the VFM to guarantee the global equilibrium (Fig. 3). The VFM, first introduced by Grédiac [12],

is known by its computational efficiency and does not need to resort to FEM in order to conduct any

forward calculations [13]. The key elements behind the VFM are the Principle of VirtualWork (PVW)

and the choice of virtual fields. According to the PVW, the internal virtual work must be equal to the

external virtual work performed by the external forces, and is written by [14]:

−
∫
+

2 : 9∗d+ +
∫
m+

T · u∗d( = 0, (5)

where 9∗ is the virtual strain, u∗ is the virtual displacement, + is the volume of the solid and T is the

traction vector. These virtual entities are mathematical test functions, work as weights and can be de-

fined independently of the measured displacements/strains. An infinite number of virtual fields can be

used, nonetheless the following two conditions should be met [1,14]: the chosen virtual fields should

be kinematically admissible, meaning that the displacement boundary conditions must be satisfied,

and the virtual fields should be constant along the boundary where the force is applied.

By coupling the VFM with the ANN model, one can use force and displacement data to indirectly

train the ANN. The strains are obtained from the displacements and fed as inputs to the neural network,

which will provide the stress tensor components. Then the stress equilibrium is evaluated globally by

means of the PVW and the parameters (W, b) are optimized until the equilibrium is respected, that is,

by minimizing the loss:

! =
1
=+

=+∑
8=1

©­«−
∫
+

2 : 9∗d+ +
∫
m+

T · u∗d(ª®¬
2

, (6)

where =+ represents the number of virtual fields.
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VFM

2. Apply the Principle of Virtual Work:

ANN

Update 

Minimize

1. Selection of virtual fields 

Fig. 3: Coupled ANN-VFMmethod for implicit constitutive modelling. The variables 9C and 9C−1 are
the deformation tensors fed as input to the ANN in order to obtain the output 2C , the stress tensor.

Application Example: Implicit Elastoplastic Modelling Using the VFM

Numerical model. The heterogeneous test developed by Martins et al [15] was chosen in order to

generate synthetic experimental data to train the ANN model. The configuration consists of a solid

3×3 mm2 plate with a thickness C = 0.1 mm. The physical domain is discretized by a mesh with a total
of 9 four-node bilinear plane stress elements. The initial mesh, geometry and boundary conditions are

depicted in Fig. 4. Symmetry boundary conditions are applied to the boundaries at G = 0 and H = 0,
and a surface traction is applied to the boundary at G = 3 mm. The traction follows a non-uniform

distribution and is composed by a single component along the G-direction, which varies linearly in the

H-direction according to: 5G (H) = <H + 1, where < and 1 respectively control the slope and intercept

of the distribution.

𝜎 · n =

{
𝑓𝑥 (𝑦)
0

}

1 4 7

2 5 8

3 6 9
𝑦

𝑥

Fig. 4: Heterogeneous test: initial geometry, mesh and boundary conditions.

The numerical simulations were conducted using the commercial finite element code Abaqus. The

model was built with CPS4R elements (bilinear reduced integration plane stress). The material was

simulated employing a non-linear isotropic elasto-plastic model, with the isotropic hardening response

obeying to the Swift’s law, given by:

fH =  (Y0 + Ȳp)=, (7)

where fH is the flow stress,  is a hardening coefficient, = is the hardening exponent, f0 is the yield
stress and Y0 the deformation at the yielding point, computed as:
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Y0 =

(
f0

 

)1/=

. (8)

The elastic parameters were defined as � = 210 GPa and a = 0.3, while f0 = 160 MPa,  = 565 MPa

and = = 0.26 were adopted for the Swift’s hardening law, corresponding to a soft steel.

Data generation and ANN training. To generate the training data, all simulations were performed

using a small displacement formulation, with the time period set to 1 and using a fixed time increment

ΔC = 0.001. For each time increment, the deformation components at the centroid were extracted for
all the elements and the global force was determined by means of computing the equilibrium of the

internal forces, such that:

�; =

=∑
8=1

f8�8C, (9)

where � is the global force, ; is the length of the solid, � is the element area and C is the thickness.

The training data was generated for different load distributions, keeping the slope fixed at < = 10
N/mm and varying the intercept parameter, such that: 1 = {50, 170, 270} N. Prior to training and for
each mechanical trial, the dataset was organized into batches of 9 elements per time increment and

shuffled before being split into training (67%) and test data (33%). The input features were normalized

to the interval [0, 1]. Two models were trained and aimed at predicting the linear elastic and elasto-

plastic responses of the material. The latter included training samples with both elastic and plastic

data. Once trained, the models were validated with different mechanical trials using the following

load distributions: < = 12, 1 = 100 for the elastic model and < = 10, 1 = 200 for the elasto-plastic

model.

The neural networkmodel used for both cases was a FFNNwith one hidden layer with of 8 neurons.

The PReLU was chosen for activation function over a standard ReLU, due to the fact that the latter

makes neurons with negative inputs to always output zero. Thus, the gradient flowing through them

will forever be zero, irrespective of the input. The issue is commonly known as “dead” neurons and

the PReLU circumvents it by having a slope for negative input values, thus making the gradients non-

zero. The slope itself is a learnable parameter that the neural network automatically adjusts during

training. The ANN architecture is summarized in Table 1.

Table 1: ANN model architecture.

Layers Neurons Activation Weight initializer

Input 6 - -

Hidden 1 8 PReLU Kaiming He

Output 3 - -

The inputs given to the model were the deformation components in the current and previous time

increments, YC and YC−1, respectively, and the outputs were the stress tensor components at the current
time increment, fC . The Adam algorithm was used to optimize the network weights, with the initial

learning rate set to 0.1, scheduled to be reduced using a multiplier of 0.2 if no improvement in the

training loss was registered after 3 epochs. For the elastic response model, the network was trained

during 20 epochs and for the elasto-plastic response model the training was set to occur during a max-

imum of 150 epochs. However an early-stopping criteria was defined such that it would be interrupted

if no further improvement was registered in the test loss. The complete set of virtual fields used to

train both models is shown in Fig. 5.
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Results and discussion. The learning curves for bothmodels are depicted in Fig. 6. The plots show that

loss decreases sharply during training after some point for both models, but convergence is achieved

earlier for the elastic model which was easier to train using only 2 virtual fields. For the elasto-plastic

response model 15 virtual fields were used during training, substantially lowering the initial loss

(Fig. 6(a)).

The validation results (Fig. 7) show that the ANN was able to learn both elastic and plastic be-

haviors, providing reasonable predictions for the stress response along the G-direction, indicating that

the VFM approach is at least working. Although using additional virtual fields improves the shear

stress response just enough for the plastic model (Fig. 7(b)), in general the ANN has a noticeable

lower sensitivity to the stress responses along H and GH. The issue may be due to fact that either the

number of chosen virtual fields is not enough to capture the material behavior or the chosen set of

virtual fields provides more weight for the stresses along G in detriment of the remaining components.

Another factor at play here is that the virtual fields were chosen manually. This strategy is often used

for non-linear models and is the easiest to implement, nonetheless it does not guarantee the chosen

virtual fields produce the best results and is tied to the expertise of the user [15].

D∗ (1) =
{
G

!
0
}

D∗ (2) =
{
0
H

!

}
D∗ (3) =

{
0 H
G2 − G!
!2

}
D∗ (4) =

{
0 sin

(
Gc

!

)
sin

(
Hc

!

)}
D∗ (5) =

{
GH(G − !)

!2

GH(H − !)
!2

}

D∗ (6) =

{
H2

!2 sin

(
Gc

!

)
G2

!2 sin

(
Hc

!

)}
D∗ (7) =

{
sin

(
Gc

!

)
sin

(
Hc

!

)
0

}
D∗ (8) =

{
G2(! − G)

!3 sin

(
Hc

!

)
0

}
D∗ (9) =

{
0
!3 − G3

!3 sin

(
Hc

!

)}
D∗ (10) =

{
G!2 − G3

!3 sin

(
Hc

!

)
0

}

D∗ (11) =

{
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(
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!

)
0

}
D∗ (12) =

{
0
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(
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!
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{
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(
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)
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Fig. 5: Complete set of virtual fields used to train the both models. Only D∗(1) and D∗(2) were used to
train the elastic model.
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Fig. 6: Learning curves for (a) the elastic and (b) the elasto-plastic response models.
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Fig. 7: Learning curves for trained (a) elastic and (b) elasto-plastic response models.
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Conclusions

Implicit constitutive modelling using ANNs does not require a mathematical formulation or parameter

identification, providing a radically different approach to the field. A new methodology to indirectly

train an ANN-based constitutive model was proposed using the VFM. The new approach allows to

train the model using directly measurable data, e.g. displacements and global force, and does not re-

quire the FEM for further calculations. According to the methodology two models were trained to

capture the elastic and elasto-plastic responses of a fictional material, using a set of hand-picked vir-

tual fields. The results show that both models were capable of learning the constitutive behavior, with

convergence being achieved very early during training. The models were able to provide good predic-

tions for the stress response along the main direction of applied force. However, in general, predictions

were poor for the remaining stress components. It is evident that the addition of virtual fields helps to

reduce the training loss, nonetheless it is not enough to guarantee a good accuracy, which may indi-

cate that either the number of virtual fields was not enough or the chosen set privileges more the stress

response in one direction in detriment of the others. In that case, a more careful selection of virtual

fields may improve the results. Another factor at play here that may explain the lack of accuracy for

fHH and gGH is the optimization process being unconstrained. As such, there may be multiple possible

solutions that provide the equilibrium between the internal and external virtual works, thus minimiz-

ing the loss, however, many of those solutions may not have physical meaning. Albeit with margin for

further improvements in the future, we consider the application example has effectively proven that

this new methodology works.
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