
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

On the topology design of a mechanical
heterogeneous specimen using geometric and
material nonlinearities
To cite this article: M Gonçalves et al 2022 IOP Conf. Ser.: Mater. Sci. Eng. 1238 012055

 

View the article online for updates and enhancements.

You may also like
Characterization of 304L laser welds using
digital image correlation and x-ray
computed tomography
Helena Jin, Jonathan D Madison, James
W Foulk et al.

-

Non-contact, ultrasound-based indentation
method for measuring elastic properties of
biological tissues using Harmonic Motion
Imaging (HMI)
Jonathan Vappou, Gary Y Hou, Fabrice
Marquet et al.

-

Inelastic deformation of highly aligned dry-
spun thermoplastic polyurethane
elastomer microfibres
Chin Joo Tan, Andri Andriyana, Bee Chin
Ang et al.

-

This content was downloaded from IP address 193.137.169.135 on 02/06/2022 at 11:57

https://doi.org/10.1088/1757-899X/1238/1/012055
/article/10.1088/1361-6501/ac0bdd
/article/10.1088/1361-6501/ac0bdd
/article/10.1088/1361-6501/ac0bdd
/article/10.1088/0031-9155/60/7/2853
/article/10.1088/0031-9155/60/7/2853
/article/10.1088/0031-9155/60/7/2853
/article/10.1088/0031-9155/60/7/2853
/article/10.1088/2053-1591/aadf57
/article/10.1088/2053-1591/aadf57
/article/10.1088/2053-1591/aadf57
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssS1WyguruPrtNutTutjYgf5OlEt0emMcCN8pgx-xOpKnvpBrZnVOMHY8h0faP1Ktdd8C3bz14qiNwh4RPDrXJ--KbGWYapHd_qzeI2VEsm8TLCjETfo0MXa72n9NaJJd_fejR_RV5wDz_CyfBvVPOuROBOeNOi8buaLA0F5Gbl1cQZZp8ngegBB422TieJXLBtQr6bQfHLUF_jfOtbLu-OsRimpnrAlprHSUFEClVzK8ppMaSP2Ac8DB4DbhIqcid2b7d7bKM6e_ztW-vaPDWa0rRABIe41MA&sig=Cg0ArKJSzOJIuidpyilc&fbs_aeid=[gw_fbsaeid]&adurl=https://www.electrochem.org/individual-membership%3Futm_source%3DIOP%26utm_medium%3D1640x440%26utm_campaign%3D2022Membership%23community


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

International Deep-Drawing Research Group Conference (IDDRG 2022)
IOP Conf. Series: Materials Science and Engineering 1238  (2022) 012055

IOP Publishing
doi:10.1088/1757-899X/1238/1/012055

1

On the topology design of a mechanical

heterogeneous specimen using geometric and

material nonlinearities
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Abstract. Material characterization and the calibration of constitutive models play an
important role in the majority of the forming processes nowadays. For an accurate virtualization
of the processes, the material mechanical behavior needs to be known a priori. The classical
characterization procedure involves carrying out several standard mechanical tests to identify
the required information about the material. However, this procedure turns out to be expensive
and time-consuming. Heterogeneous mechanical tests have been used to overcome this issue. By
providing richer information with a reduced number of tests, their use can enhance the actual
material characterization process. This work aims at making a significant contribution towards
this goal by designing a heterogeneous mechanical test using topology optimization. A specimen
topology is obtained with a heterogeneous displacement field by applying the theory of compliant
mechanisms. Due to the large displacements considered, a geometrically nonlinear finite element
analysis and a topology optimization procedure are proposed. Material nonlinearity is taken
into account as well, to design solutions closer to reality. An optimal mechanical test with
a highly heterogeneous strain field is obtained and evaluated, considering its diversity, using
mechanism theory and a mechanical indicator.

1. Introduction
The virtualization of sheet metal forming processes is proceeding at an increasing pace. Material
characterization and model calibration procedures play a key role in the accuracy of that
process. A whole range of classical mechanical tests is usually carried out to identify the
required parameters to characterize a specific material behavior. In order to avoid the costs
and time associated with this procedure, heterogeneous mechanical tests have been used.
Several authors have already addressed this topic by proposing nonstandard configurations for
mechanical tests towards the improvement of the material characterization process. The design
of a mechanical test based on the empirical knowledge of the authors was addressed in [1–3],
for example. The strain field heterogeneity was used as a criterion to lead the design process
using optimization methodologies [4–7]. A step further relies on evaluating the uncertainty of
the identified parameters [8–10]. Adding the errors from full-field measurements techniques, the
full measurement chain can be considered to evaluate the identification quality [11,12].

Although several methodologies have already been proposed, to the best of the authors’
knowledge, there is still a need for a systematic design methodology. An optimization approach
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is required to achieve an optimal solution for the test design. Also, the obtained designs need
to be independent on the initial guess of the design. Therefore, this work aims at filling this
gap by proposing an nonlinear topology-based optimization methodology for designing specimen
geometries with heterogeneous displacement and strain fields. The goal is to provide a relevant
quantity and quality of information about the material behavior with a single test. The design
methodology is based on a nonlinear topology optimization problem. Geometric and material
nonlinearities are considered in order to account for the large displacements and the nonlinear
material behavior. Several works have already addressed the nonlinear topology design of
structures and compliant mechanisms. Topology optimization of structures with both geometric
and material nonlinearities was addressed by Jung et al. [13]. Huang et al. [14] focused also on
structural design under displacement loading. Capasso et al. [15] used nonlinear mechanics to
analyze the stress-based topology optimization of compliant mechanisms. A similar work was
proposed by Leon et al. [16], who also addressed the topology design of compliant mechanisms
with material and geometric nonlinearities using stress constraints.

This work proposes a methodology to design specimen geometries with strain heterogeneities
by coupling the design by topology optimization and an extended version of the theory of
compliant mechanisms [17]. On this basis, non standard specimen designs can be obtained with
highly heterogeneous displacement fields. Heterogeneity is introduced through the displacement
field by applying two displacements in specific locations of the specimen. Therefore, several
mechanical states can be induced depending on the applied displacements. A previous work
already accounted for the large deformations that the specimen is submitted to [18]. In this
work, material nonlinearity is introduced, being the nonlinear material behavior described by
von Mises yield criterion and the Swift law. An optimal specimen geometry is obtained with a
nonconventional geometry. Its performance in inducing a diversity of stress states is evaluated
using a mechanical indicator.

2. Heterogeneous test design
Heterogeneous mechanical tests are a step ahead in material characterization due to the
heterogeneous displacement and strain fields that are induced in them. These provide relevant
information about the material behavior that is crucial for the calibration of the constitutive
models. To induce such heterogeneity in a specimen is the goal of some of the test design
methodologies that have been developed. In this work, it is proposed to introduce heterogeneity
in the displacement field by coupling the design by topology optimization and an extended
version of the compliant mechanisms. The former is used to obtain nonstandard specimen
geometries, which on its own already can generate nonhomogeneous displacement fields. The
latter is added to the approach to create more heterogeneity by applying displacements in specific
locations of the specimen. Depending on the chosen locations, specific strain/stress states can
be induced in the specimen and, consequently, lead to the enrichment of the strain field.

The design by topology optimization starts from a predefined design domain to find the
optimal material distribution inside the boundaries of that domain. The starting point chosen
in this work is represented in Figure 1. A schematic representation of the initial design domain
is shown, which geometry is chosen in order not to restrict the material distribution update. A
uniaxial tensile loading test is reproduced. Only one quarter of the design domain is represented.
The load applied by the grips of the testing machine is represented by Fin. The height of the
design domain is more than twice than the height of the grips since it is assumed that this height
is enough to provide the optimal solutions. Based on the theory of compliant mechanisms, two
displacements are applied in specific locations of the specimen. Two locations, input and output,
are chosen empirically by the authors. The first one corresponds to the displacement of the grips
and the second is applied preferentially far from the specimen boundaries. It can be applied in
different directions, being responsible for the way the specimen deforms.
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Figure 1: Schematic representation of the topology design domain subjected to a uniaxial tensile
loading.

2.1. Problem formulation
The design optimization problem aims at finding the optimal material distribution for the
specimen. The material layout, X, is defined by the design variables, Xe, that represent the
relative density of each element. These variables characterize the quantity of material in each
element, taking the value 0 when the element is empty or the value 1 when the element is full.
The density of each element is updated at each iteration of the optimization process until the
optimum of the objective-function is found. In this work, it is proposed to maximize the ratio
between the displacements in the output, uout, and input, uin, locations in order to enhance the
heterogeneity of the displacement field of the specimen. Therefore, the optimization problem is
defined as follows:

maximize
X

T (X) =
uout(X)

uin(X)
, (1)

subject to R = 0,∑M
e=1XeVe∑M
e=1 Ve

− V ∗ ≤ 0,

0 ≤ ρmin ≤ Xe ≤ 1, e = 1, 2, ..,M.

where M is the number of elements and Ve the volume fraction of each one. V ∗ corresponds to
the volume fraction required for the final specimen design. ρmin represents a minimum value for
the element density to avoid numerical issues. A nonlinear finite element analysis is proposed
for the design procedure. When the equilibrium is achieved, the balance between the external
and internal loads of the specimen, R = 0, is required to be zero.

2.2. Nonlinear Finite Element Analysis
To reproduce accurately the specimen behavior when submitted to a tensile loading test, it
is proposed to carry out a nonlinear finite element analysis. Both material and geometric
nonlinearities are considered and the latter aims at accounting for the large displacements that
the specimen is submitted to. For that purpose, the Green-Lagrange strain tensor is used, being
composed of linear and nonlinear parts that can be represented as follows:

E = EL + EN = BLU + BNU, (2)

where BL and BN correspond to the linear and nonlinear transformation matrices between nodal
displacements, U, and element strains, E, respectively. Along with the strain measure, the sec-
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ond Piola-Kirchoff stress tensor, S, is also employed in the system analysis.

The equilibrium of the system is one of the constraints of the optimization procedure and
can be defined as

R =

∫
BTS dV − Fext = Fint − Fext, (3)

where B is composed of both the linear and nonlinear matrices, BL and BN, respectively. An
incremental-iterative approach is used to solve the nonlinear finite element analysis. The external
load is applied in increments ∆Fext during which the displacements ∆U are found iteratively to
achieve the equilibrium for the current configuration. At each load increment, the equilibrium
is achieved when the residual R is equal to zero. Its computation considers the current state of
the topology, being Fint the internal load of the system considering its history and Fext the load
that has already been applied. The iterative procedure is solved using the Newton-Raphson
algorithm and requires the determination of the tangent stiffness matrix defined as

KT = −∂R

∂U
, (4)

that can be written as follows

KT = KL + KN + KS (5)

=

∫
BT

LDepBLdV +

∫
BT

LDepBNdV +

∫
BT

NDBLdV +

∫
BT

NDepBNdV +

∫
GTMGdV .

The first two terms, KL and KN, are the stiffness matrices due to the small and large
displacements, respectively. The latter term, KS, is related to the initial stress state, in which
M is composed of elements of the stress tensor S and G stands for a derivative matrix of
shape functions with respect to coordinates. The consistent tangent matrix, represented as
Dep, improves the overall convergence of the equilibrium equations when the Newton-Raphson
method is used for the latter [19]. It is computed during the material behavior analysis that will
be described in the following section, considering plane stress conditions.

2.3. Material behavior
The elastoplastic material behavior is taken into account in this work. Both the elastic and the
plastic behaviors are considered isotropic, being the former described by Hooke’s law. The yield
function can be represented as follows:

f(σσσ, ε̄p) = σvm(σσσ) − σy(ε̄p) (6)

where σvm(σσσ) stands for the von Mises equivalent stress defined based on the stress tensor σσσ.
The yield stress, represented as σy, is defined by the equivalent plastic strain, ε̄p. Thus, the
isotropic hardening behavior of the material is characterized by the Swift Law, which can be
computed as

σy(ε̄p) = K(ε0 + ε̄p)n (7)

where K, ε0 and n are the constitutive model parameters. The yield surface is described by the
von Mises yield criterion [20] considering plane stress conditions as

σvm(σσσ) =
√
σ2xx + σ2yy − σxxσyy + 3τ2xy (8)

where σxx, σyy and τxy correspond to the components from Cauchy stress tensor σσσ.
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In the finite element analysis, the second Piola-Kirchhoff stress tensor, S, is used (work-
conjugate to the Green’s strain tensor) in contrast to the Cauchy stresses, σσσ, that are applied in
the analysis of the material behavior. While the first one is related to the original configuration,
the latter relates to the current configuration [19]. Therefore, it is needed to establish a
relationship between them that is given by

S = JF−1σσσF−T, (9)

where F is the deformation gradient between the original and the new configurations and J its
determinant.

2.4. Sensitivity analysis
The objective-function of the topology optimization problem evaluates the ratio between the
displacements in the output and input locations. Therefore, the sensitivity of the objective-
function can be defined as

dT

dX
=

duout
dX uin − duin

dX uout

u2in
, (10)

where the derivative of the output and input displacements can be derived using the adjoint
variable method in the following manner,

uin = LT
inU + γγγTR, (11)

uout = LT
outU + λλλTR, (12)

where Lin and Lout stand for two vectors with the value of one at the input and output locations
and zeros in the remaining ones, respectively. Assuming that the equilibrium has been found,
the terms γγγTR and λλλTR are equal to zero and, therefore can be added to the displacements.
The derivative of the input and output displacements can be written as

∂uin
∂Xe

= −p
[
(1 −Xe) ρ

p−1
min +Xe

]
γγγTe Fe

int, (13)

and
∂uout
∂Xe

= −p
[
(1 −Xe) ρ

p−1
min +Xe

]
λλλTe Fe

int, (14)

respectively. The adjoint vectors λλλ and γγγ can be easily obtained as the solutions to the lin-
ear adjoint equations KTλλλ = Lout and KTγγγ = Lin. The tangent stiffness matrix has already
been found during the equilibrium equations. The material properties are determined using the
Solid Isotropic Material with Penalization (SIMP) method [21], in which the element densities
are penalized using a penalization factor, p. The adopted methodology [22] establishes a non-
homogenized combination of solid and void in intermediate elements, being required a linear
interpolation between the two phases, solid and void.

2.5. Solution evaluation
From the design optimization procedure, an optimal specimen geometry is obtained. Based
on the stress/strain fields that are induced after a uniaxial tensile loading test, the specimen
is evaluated using a mechanical indicator [7]. It analyzes the performance of the specimen in
inducing a high diversity of stress states and can be computed as

id =

3∏
s=1

[
3∑n

e=1Xe

n∑
e=1

(sδe Ze Xe)

]
. (15)
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Solutions with stress concentrations or unstressed material are penalized based on the von Mises
stress using the parameter Ze. The index s indicates the stress state (tension, compression, and
shear) that the element e is subjected to. According to the principal strains relationships, the
operator sδe assumes the value of one or zero if the element is in the stress state s or not,
respectively. Based on a generalization of the smooth Heaviside function, the parameter sδe can
defined as

sδe =


1

2

(
1 − tanh

(
β
(
ε1e + 0.75ε2e

) ))
, s = 1

1

4

(
1 + tanh

(
β
(
ε1e + 0.75ε2e

) ))(
1 − tanh

(
β
(
ε1e + 1.5ε2e

) ))
, s = 2

1

2

(
1 + tanh

(
β
(
ε1e + 1.5ε2e

) ))
, s = 3

. (16)

where the parameter β controls the ”agressiveness” of the Heaviside function. ε1 and ε2 stand
for the major and minor principal strains, respectively. The ideal solution would present the
same amount of material in the three stress states (tension, compression, and shear) without
stress concentrations or unstressed material.

3. Implementation
The design procedure is based on a nonlinear topology-based optimization methodology from
which an optimal specimen is obtained. Figure 2 represents the structure of the developed
methodology.

At the beginning of the design optimization, the design domain is established along with
the volume fraction and the filtering parameters [22]. The material distribution that is being
evaluated is submitted to a nonlinear finite element analysis, from which the displacements
and internal forces are obtained. The sensitivity analysis is performed as well as the objective-
function computation. A filtering technique is applied to the sensitivities and the design variables
are updated by the Method of Moving Asymptotes (MMA) [23]. A new iteration starts with
the updated topology in case the convergence criterion is not reached. Otherwise, an optimal
solution is obtained. At the end of this process, the solution is submitted to a performance
evaluation using the mechanical indicator.

A nonlinear finite element analysis is proposed to account for the nonlinear behavior of the
specimen. Since material and geometric nonlinearities are considered, an incremental analysis
is proposed to evaluate the structure behavior as the load level evolves. The equilibrium R = 0
is found, at each increment, iteratively using the Newton-Raphson method [19]. The tangent
stiffness matrix describes the structure current configuration, being updated at each iteration.
The equilibrium at each load increment is achieved when a balance between the external and
internal loads is obtained. For determining the last ones, the computation of the stresses is
required. The elastoplastic behavior of the material makes it necessary to use an yield criterion
to predict when yielding occurs and, consequently, to compute correctly the stresses. If the
stresses are computed by an elastic relationship and they are found to lie within the yield surface,
the material is found to remain elastic. Otherwise, these are already in the plastic regime, being
no longer determined by a linear assumption. The Backward-Euler return method [19] needs
to be applied to determine the plastic strain increment and, consequently, the updated stresses
and the consistent tangent matrix.

4. Results
The developed methodology is applied to the design of an optimal heterogeneous mechanical test.
From the initial design domain, represented in Figure 1, three specimen geometries are obtained
considering material and geometric nonlinearities. These solutions are shown in Figure 3. A
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Figure 2: Flow diagram of the nonlinear topology optimization methodology.

volume fraction of 35% of the total initial volume is required for the specimen designs. The
location of the output displacement is chosen to be established in the left symmetry boundary
of the specimen and it is represented by the red arrow. A mesh of 50 × 50 elements is used.
These parameters are the ones that led to the best results [24]. The elastic material properties
are represented in Table 1 as well as the constitutive model parameters related to the Swift Law.

Table 1: Elastic properties and constitutive model parameters for Swift’s isotropic hardening
law of DP600 [25].

Elastic Swift

E [GPa] ν K [MPa] ε0 n

DP600 210 0.3 979.46 0.00535 0.194

Three different assumptions have led to the topologies presented in Figures 3(a), (b) and (c),
that are entitled as solutions A, B and C, respectively. The first one considered the material
behavior linear elastic. With the same material behavior, solution B was obtained assuming
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(a) Solution A (b) Solution B (c) Solution C

Figure 3: Obtained specimen designs with a topology-based optimization methodology
considering: (a) a linear material and geometric behavior, (b) geometric nonlinearities with
a linear elastic material and (c) geometric and material nonlinearities. The stress states induced
in the specimen are represented.

geometric nonlinearities in order to account for the large displacements that the specimen is
submitted to. Material and geometric nonlinearities were considered to obtain the last topology.
The elastoplastic material behavior influences the design optimization process and, consequently,
the obtained specimen designs.

Regarding the obtained specimen geometries, although the material is similarly placed in the
locations where the displacements and loads are being applied, the overall material distribution is
rather different. Their performance in inducing a high diversity of stress states is evaluated using
the performance indicator. For the solutions A, B and C, the values of the performance indicator
are 0.0359, 0.0190 and 0.0215, respectively, being the solution A the one with the highest
heterogeneity of stress states. However, this scalar indicator does not take into consideration the
equivalent plastic strain through the specimen or the duration of the test, since an early rupture
of the specimen limits the quantity and quality of the information that can be extracted from the
specimen. Therefore, a Finite Element Analysis (FEA) was conducted in ABAQUS/Standard
using a forming limit diagram to predict the moment which the specimen rupture occurs. In
Figure 4, the obtained results are represented. The ratio of the major and minor principal
strains (ε1/ε2), the equivalent plastic strain (ε̄p) and the von Mises stress (σVM) are depicted for
each solution at the moment just before rupture.

Concerning the ratio between the major and minor principal strains, it can be noticed that
due to the applied tensile load, most of the specimen is subjected to tension. However, a
significant area of the specimens under other mechanical states, such as compression and shear
(the mechanical states considered in this work) can be observed, particularly, in solution C.
This validates the purpose of this methodology that aims at creating heterogeneity of mechanical
states. The equivalent plastic strain is represented along the specimen at the moment just before
rupture. In solution A, the rupture occurs too early in the testing procedure due to its complex
geometry. Therefore, plastic strains only exists in small areas of the specimen. A similar issue
arises in solution B. The solution C consists in the specimen geometry with the largest area in
the plastic regime. Regarding the von Mises stress, the maximum values of each solution are
similar, being around 700 MPa. Solution A, due to its early rupture in specific locations of
the geometry, presents the maximum value in those locations, being most of the specimen area
under low values of the von Mises stress. In contrast, the specimen C presents higher values of
the von Mises stress over its surface, leading to a higher duration of the test and, consequently,
providing more information about the material behavior.
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Figure 4: Obtained results from FEA: the ratio between major and minor principal strains
(ε1/ε2), the equivalent plastic strain (ε̄p) and the von Mises stress (σVM) for each solution (A, B
and C).

Based on these results, it is possible to conclude that the solution C, obtained with the
methodology proposed in this work, consists in the specimen design that better suits for the
improvement of the material characterization process. Therefore, this methodology should be
used in order to obtain specimen geometries that take into account the real nonlinear material
and geometric behavior.

5. Conclusions
In this work, a nonlinear topology-based methodology is proposed for the design of a
heterogeneous mechanical test. Geometric and material nonlinearities are considered for the
design of test in order to lead to more realistic results. Large deformations are taken into
account in the finite element analysis as well as the elastoplastic material behavior, characterized
by the von Mises yield criterion and the Swift law. An optimal specimen geometry is obtained.



International Deep-Drawing Research Group Conference (IDDRG 2022)
IOP Conf. Series: Materials Science and Engineering 1238  (2022) 012055

IOP Publishing
doi:10.1088/1757-899X/1238/1/012055

10

The influence of the material and geometric nonlinearities in the test design is analyzed by
comparing to other solutions. Several differences were noticed between the topologies related
to the material layout and, consequently, to their performance. Solution C, the one obtained
assuming a nonlinear material and geometric behavior, presented the largest area in the plastic
regime and the more interesting von Mises stress distribution. The obtained specimen design
has the potential to provide a higher quality and quantity of information about the material
behavior, being the proposed methodology of major relevance for an accurate test design.
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