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Abstract. The reliability and predictive accuracy of forming simulation depend on both the material 
constitutive model and its inherent parameters. As opposed to conventional sheet metal material 
testing, heterogeneous mechanical tests provide more complex strain and stress states. Heterogeneous 
mechanical tests can be used to efficiently predict the material behavior in forming processes due to 
an improvement in the time required and accuracy in the identification of the parameters. The present 
work aims at identifying the Swift hardening law parameters of a dual-phase steel by means of an 
optimum-designed interior notched specimen that presents several strain and stress states 
simultaneously. The finite element model updating (FEMU) technique was used for the identification 
of 3 parameters, by comparing a DIC-measured virtual material with numerical results iteratively 
DIC-filtered.  

Introduction, Framework and Literature Review 
The simulation and virtualization of manufacturing processes are crucial for the development of 
engineering solutions. However, realistic simulation predictions require an adequate constitutive 
model and the accurate determination of its inherent parameters. Nowadays, its calibration relies on 
several classical mechanical tests. This approach is very time and cost consuming. Besides, it only 
provides information for a fixed stress state that cannot reassemble the complex strain and stress fields 
that are generated in many manufacturing processes [1]. On contrary, the heterogeneous mechanical 
tests can provide several strain and stress states simultaneously, reducing the required number of tests 
in the model calibration [2]. Several authors ([1-10]) have already proved the reliability of the 
heterogeneous mechanical tests for model calibration using inverse methods. Moreover, it was proved 
in [5, 7 and 11] that these tests outperform the classical tests in parameter identification. 

Regarding parameter identification, various methods can be used and, for further information, it is 
recommended to read the review in [12]. An adaptation of the Finite Element Model Updating 
(FEMU) is going to be used in this work. The FEMU is an optimization procedure that compares the 
strain/displacement fields or even the reaction force of the experimental test with a numerical test by 
calculating its difference. Nevertheless, it is not consistent to compare experimental data that was 
measured using Digital Image Correlation (DIC) with numerical data obtained with FEA since there 
are several discrepancies, such as different coordinate systems, data locations, strain formulation and 
calculation methods, spatial resolution and filtering [13]. Significant strain errors were observed in 
[13] when comparing results using direct interpolation methods due to disregarding the effect of the 
DIC filtering. These issues can lead to errors in the FEMU cost function value, which are reported in 
[14]. So, in this work, the FEMU approach was adapted to measure the strain fields of the numerical 
test with DIC techniques. This way, both experimental and numerical sets of data have the same 
filtering, spatial resolution and strain calculation method. Besides, in this work, the experimental test 
was replaced by a virtual test obtained using synthetically deformed images based on the data of a 
numerical test, as in [15]. Thus, the error between the obtained set of parameters and the reference 
can be estimated. 
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It is very important to have adequate input data for the FEMU. Therefore, an innovative 
heterogeneous mechanical test for uniaxial loading conditions developed in [16] using an 
optimization approach based on a heterogeneity indicator is going to be used for the parameter 
identification of the Swift law. Although it seems unnecessary to use a heterogeneous test for the 
calibration of the Swift law, it was concluded otherwise with the methodology present in [17]. The 
influence of the parameters on the strain gradients was evaluated and it was demonstrated that a more 
heterogeneous test presents better identifiability of these parameters when compared to a test with 
reduced heterogeneity. Moreover, this approach allows the identification of the material parameters 
beyond the onset of necking, which is the classical experimental limit. 

This paper is divided into four sections. The first presents a short introduction, framework on the 
topic and a literature review. The second section describes the methodology and implementation. 
There’s a description of the heterogeneous mechanical tests and the heterogeneous dogbone test (for 
comparison reasons) used for the parameter identification, the constitutive model that was calibrated 
and the material used. Subsequently, the Finite Element Analysis (FEA) model of the tests, the DIC 
and synthetic images technique and lastly the adapted FEMU-based approach are presented. The third 
section presents the analysis and results of the parameter identification of the Swift hardening law 
with both tests. The last section offers the conclusions and the proposal of future works. 

Methodology and Implementation 
A FEMU-based approach was used to identify the parameters of Swift hardening law regarding 
DP600 steel. However, some adaptations of the classical FEMU technique were made for this work. 
Generally, this approach compares experimental with numerical data. Though, the experimental data 
was replaced by virtual experimental data which information was calculated using DIC and 
synthetically deformed images, being considered the material of reference. This way, it is possible to 
estimate the error between the calibrated solution and the reference solution. Additionally, the 
iteratively numerically generated data is not compared directly with the reference material data. 
Again, synthetically deformed images were created iteratively based on the numerical analysis, being 
the numerical data a DIC-leveled numerical data. Therefore, both solutions are evaluated using the 
same measurement technique. A flowchart showing all the process here described is presented in 
Figure 1. 

 

Figure 1: Flowchart describing the FEMU-based approach using a full integration of the synthetically 
deformed images to identify the unknown set of parameters of the material constitutive model. 
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Mechanical Tests. In the present work, synthetically deformed images of an innovative 
heterogeneous mechanical test proposed in [16 and 18] were used as reference virtual material data 
in the approach. Moreover, for comparison reasons, a heterogeneous dogbone test was also analyzed. 
Its non-constant section geometry and uniaxial loading conditions are presented in Figure 2 (a). 

The geometry of the heterogeneous specimen is presented in Figure 2 (b). This interior notched 
specimen was design by shape optimization, based on the maximization of the heterogeneity. The 
heterogeneity of the test was evaluated using several heterogeneity indicators that favor solutions that 
exhibit several strain states simultaneously with large magnitudes. The shape of the interior notch 
follows a third-degree spline defined by a total of 20 points, which coordinated of the first quadrant 
are presented in Table 1. This specimen has 2 symmetries, ensuring the balance during the 
experimental testing. The specimen is tested in uniaxial loading conditions up to rupture. 
 

   
(a) (b) 

Figure 2: Geometry, dimensions (in mm) and loading conditions of the specimen (a) for the dogbone 
mechanical test and (b) for the heterogeneous mechanical test used in the parameter identification 
approach. 
Table 1: Geometry definition of the interior notch shape in the first quadrant. Coordinates of the spline 
considering the origin located in the center of the specimen. 

 P1 P2 P3 P4 P5 P6 
xx [mm] 0.000 3.708 23.092 23.505 15.889 3.086 
yy [mm] 10.000 11.412 31.784 17.078 5.163 0.000 

Constitutive Model and Material Definition. To describe the numerical linear elastic material 
behavior, the Hooke’s law was used, with a modulus of elasticity of 210 GPa and Poisson’s ratio of 
0.3. For the hardening and anisotropy behavior, it was defined the Swift hardening law [19] and the 
Yld2000-2d criterion [20], respectively. The reference parameters of the DP600 steel with 0.8 mm 
thickness are presented in Table 2. The rupture criterion implemented was based on the FLD (Forming 
Limit Diagram) [21]. Only the parameters of the Swift law were calibrated, being a total of 3 
parameters. The exponential of the Yld2000-2d function nominated as 𝑎𝑎 is equal to 6 since the 
material has a BCC type of crystal structure. 

Table 2: Swift hardening law and Yld200-2d criterion parameters of the reference solution [21]. 

Swift Law 𝑲𝑲 [MPa] 𝛆𝛆0 𝒏𝒏 
 979.460 0.00535 0.194 
Yld 2000-2d 𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 𝛼𝛼4 𝛼𝛼5 𝛼𝛼6 𝛼𝛼7 𝛼𝛼8 𝑎𝑎 
 1.011 0.964 1.191 0.995 1.01 1.018 0.977 0.935 6 
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Finite Element Analysis of the Test. The mechanical tests previously specified were modeled using 
Abaqus software [22] under plane stress state using 858 and 2975 CPS4R elements for the dogbone 
and for the heterogeneous specimen, respectively. The type of numerical element used was the 
CPS4R. The material behavior was implemented using the UMMDp developed by JANCAE (Japan 
Association of Nonlinear CAE) [23]. Both specimens were subjected to uniaxial loading conditions 
by imposing a displacement up to rupture. A total of 10 evenly spaced time increments were used to 
create the synthetic images. 
DIC and Synthetic Images. The MatchID 2D software [24] was used to synthetically deform a 
speckle pattern, based on the initial mesh and displacement fields outputted from the Abaqus 
simulation. The speckle pattern was numerically generated with a 3 px dot size to avoid aliasing [25] 
and printed in true dimensions. The hardware and DIC analysis parameters are presented in Table 3. 
A performance analysis was conducted to access the adequate DIC parameters, which are presented 
in the same table. 

Table 3: Hardware and DIC analysis parameters using MatchID 2D software [24]. 

FEMU-Based Approach.  
The FEMU-based approach is driven by the minimization of the optimization function written as: 
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where 𝝌𝝌 is the vector of the unknown set of material parameters, 𝐹𝐹 is the load signal and 𝜀𝜀 is the 
originated strains obtained after a DIC analysis. The superscripts “num” and “exp” refer to the data 
originated iteratively during the optimization process and the virtual experimental (reference) data, 
respectively. The number of time instances is 𝑛𝑛t and the number of in-plane measurement points is 
𝑛𝑛p. 𝐹𝐹max

ref  is the maximum load value for each test and 𝜀𝜀max
ref  the maximum strain value of all in-plane 

components for each test. 
The optimization algorithm used was the Levenberg-Marquardt [26], which is a robust 

optimization algorithm that is generally used to solve non-linear least squares problems. 

Parameters 
Camera Flir Blackfly BFS-U3-51S5M-C 
Image resolution [px2] 2448 × 2048 
Focal length [mm] 12.5  
Average speckle size [px] 3 
Image filtering Gaussian, 5px kernel 
Image conversion factor [mm/px] 0.05039 (for the dogbone test);           

0.07241 (for the heterogeneous test) 
Subset size [px] 21 
Step size [px] 5 
Subset shape function Quadratic 
Matching criterion ZNSSD 
Interpolation Bi-cubic spline 
Strain window [datapoints] 11 
Strain formulation Green-Lagrange 
Post-filtering of strains Spatial 
Displacement noise-floor [px] 0.009 
Strain noise-floor [mm/mm] 1.246 × 10−4 (for the dogbone test); 

1.209 × 10−4 (for the heterogeneous test) 
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Analysis and Results 
The DIC-levelled FEMU approach was analyzed for different initial sets of parameters and the 
optimized solutions were obtained. The maximum and minimum bounds in between which each 
parameter can vary are presented in Table 4, as well as the best parameters and the relative errors of 
the model calibrated with the dogbone and the heterogeneous specimens. 
Table 4: Reference set of parameters, minimum and maximum admissible bounds, initial and final 
set of parameters and relative error compared to the reference of the adapted FEMU calibration using 
the dogbone and heterogeneous specimens. 

 𝑲𝑲 [MPa] 𝛆𝛆0 𝒏𝒏 Cost function 
Minimum bound 500.00 0.100 × 10−5 0.100 × 10−5 - 
Maximum bound 1500.0 0.0100 0.400 - 

                              Heterogeneous dogbone test 
Reference set 979.46 0.00535 0.194 1.055 × 10−9 
Initial set 1 1000.0 0.00480 0.100 7.099 × 10−2 
Final set 942.96 9.99 × 10−7 0.169 2.689 × 10−4 
Error [%] 3.7265 100 12.9 - 
Initial set 2 708.51 0.00573 0.218 8.830 × 10−2 
Final set 979.14 0.00534 0.194 1.680 × 10−8 
Error [%] 0.032671 0.187 0.000 - 

                              Heterogeneous test 
Reference set 979.46 0.00535 0.194 2.665 × 10−8 
Initial set 1 1000.0 0.00480 0.100 8.853 × 10−2 
Final set 902.99 0.00457 0.103 5.153 × 10−2 
Error [%] 7.8069 14.6 46.9 - 
Initial set 2 708.51 0.00573 0.218 8.612 × 10−2 
Final set 979.00 0.00533 0.194 3.323 × 10−8 
Error [%] 0.046964 0.374 0.000 - 

Although there is a notable dependence of the initial set of parameters in the identification process, 
a significant reduction of the cost function value was obtained with both test configurations. The 
dogbone test identifies the parameters with a relative error below 0.2%, whereas the heterogeneous 
test finds the parameters with relative errors below 0.4%. Both calibrations are very accurate, 
especially in the identification of the 𝑛𝑛 parameter. Also, in both approaches, the identified parameter 
with the largest relative errors is the ε0. The large errors obtained with the initial set 1 can be reduced 
by changing the initial set of parameters and attempting a multi-starting approach. 

The evolution of each material parameter, the cost function and the strain and force terms of the 
cost function along the identification process for the set of calibrated parameters that displays the 
lowest relative error (started from the initial set 2) is shown in Figure 3. It can be noticed that the 3 
parameters are accurately identified after 50 evaluations. The cost function value is lower for the 
dogbone approach mainly due to the larger reduction of the differences in the strain fields. This can 
be associated with the complexity of the generated gradients. Indeed, the dogbone specimen yields a 
strain field that can be easily reconstructed by the DIC algorithm. The heterogeneous specimen, 
however, generates strong strain gradients which are much more challenging for strain reconstruction. 
Concerning the force term, it presents similar behavior between both tests. Regarding the 
computational time, the heterogeneous test takes approximately 2.5 times more computational time 
than the dogbone test for each evaluation. 

2242 Achievements and Trends in Material Forming



 

  
Figure 3: Evolution of the material parameters, cost function and strain and force term of the cost 
function value along the identification process of the initial set 2. 

The same set of parameters was used to plot the Swift hardening law, depicted in Figure 4. Again, 
it is observed that both calibrations are very accurate, comparing to the reference solution. 

 
Figure 4: Swift hardening law representation of the calibrated parameters of the initial set 2. 

In this case, the heterogeneous test is as accurate as the dogbone test to calibrate the Swift law. 
However, it is expected for the heterogeneous test to better calibrate an anisotropy constitutive model, 
since it presents several different strain and stress states, that the dogbone does not. 

Conclusions and Future Works 
In the present work, the Swift hardening law parameters were identified using an innovative 
heterogeneous specimen and a heterogeneous dogbone specimen, both under uniaxial loading 
conditions up to rupture. A total of 3 parameters were accurately calibrated using a DIC-levelled 
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FEMU methodology. Both the experimental (virtual experiment, for this work) and the numerical 
strain fields are evaluated through DIC-filtered deformed synthetic images, using Abaqus and 
MatchID 2D software’s, respectively. 

In terms of the identification problem, both the dogbone test and the heterogeneous test approaches 
found the best set of parameters after 50 evaluations. The optimization process is very dependent on 
the initial set of parameters and, thus it is not robust. Even so, this problem was overcome using more 
than one initial set of parameters. There were found very accurate material parameters of the Swift 
hardening law, with relative errors below 0.4% for both the dogbone and heterogeneous test. These 
sets of parameters correctly represent the Swift law curve, compared to the reference set of 
parameters. The main differences observed in the cost function value were related to the strain term. 
This is probably due to the simpler strain gradients that the dogbone test exhibits and can be better 
reconstructed. While the heterogeneous test presents a more complex strain field, that can lead to 
larger errors in the strain field virtual reconstruction. 

The different strain and stress states that the heterogeneous test can display were not relevant to 
calibrate the hardening model, but it is expected to become essential in reducing the number of 
experimental tests necessary for the accurate calibration of a more complex constitutive model, for 
instance when identifying anisotropy behavior of materials. 

As future works, it is proposed to extend this methodology to the identification of a more complex 
constitutive model, such as the Yld2000-2d function. In this case, it is expected to be necessary to 
evaluate different material orientations and several dogbone tests in order to have a correct model 
calibration. Concerning the heterogeneous test, it is expected to reduce the number of required tests, 
compared to the heterogeneous dogbone test, since the first presents more complex strain and stress 
fields. 
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