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Abstract.Computer-aided engineering systems rely on constitutivemodels and their parameters to de-

scribe thematerial behaviour. The calibration of more elaboratedmaterial models with a larger number

of parameters becomes very time and cost consuming. The development of image-based technology

has enhanced the interest in inverse identification methods, which, when coupled with full-field mea-

surements, have the potential to reduce the number of experimental tests required to accurately identify

material properties. This work aims to identify the Swift hardening law parameters of a dual-phase

steel using a tensile test on a heterogeneous dogbone specimen under uniaxial and quasi-static loading

conditions using the finite element model updating (FEMU) technique. The numerical results were

used to generate synthetic images, which were then processed by digital image correlation (DIC) and

used as the reference in the identification procedure. Two different approaches were tested: (i) directly

comparing the numerical results to the reference; (ii) using DIC-levelled numerical data by iteratively

generating synthetic images and using the DIC filter with the same settings as were used on the refer-

ence (virtual experiment). The identification results obtained from both approaches are compared and

discussed.

Introduction

Computer-aided engineering systems play a key role in the simulation of manufacturing processes,

in order to reduce costs and time-waste in the development of high-quality products. The material

constitutive model and its parameters influence the reliability and accuracy of metal forming simula-

tions. Although finite element analysis (FEA) is widely used to simulate processes, the accuracy of

the simulation highly depends on the calibration of the model that describes the material behaviour.

In the recent decades, the scientific community has made significant efforts to develop precise

constitutive model formulations in elastoplasticity [1, 2], including complex yield functions, isotropic

and kinematic hardening models [2], and other advanced formulations [3]. However, the calibration

of material constitutive models is still facing open challenges [4]. Furthermore, for more elaborated

material models with a larger number of parameters, the calibration process becomes more complex

and time-consuming [5].

Classical approaches involve identifying the material parameters through a series of classical me-

chanical tests that produce a quasi-homogeneous strain field at the gauge section [6]. The material

parameters are then identified with post-treatment based on analytical expressions for the stress and

strain components. Nevertheless, due to the simplified geometry and loading conditions, only a limited

number of parameters can be identified per test configuration. However, as the number of experimental

tests and material parameters increases, the experimental identification becomes increasingly difficult

[7]. In order to solve this issue, inverse identification strategies must be used.
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Given the recent advancements in image-based technology, there has been an increase in the use

of novel optical methodologies in solid and fluid experimental mechanics, which are contact-free and

provide full-field data. Among these techniques, digital image correlation (DIC) [8, 9, 10] has grown in

popularity in recent years due to its relative ease of use, while also providing a good balance between

spatial resolution and accuracy. This technological advancement was followed by the development

of inverse identification methods to calibrate complex material models [11], most notably the finite

element method updating (FEMU) method [12, 13, 14] and the virtual fields method (VFM) [15]. This

approach has the potential to reduce the number of experimental tests required to accurately identify

all material properties, given that the test configuration is rich enough so that all material properties

play a role in the mechanical behaviour.

Experimental validation of FEA is crucial for developing confidence in numerical model predic-

tions. Traditionally, experimental DIC measurements and FEA results were compared directly in the

FEMU approach. However, numerous inconsistencies must be addressed before doing this compari-

son, including different coordinate systems, data locations, strain formulation, spatial resolutions, and

data filtering. To address these issues, recent studies used an approach based on deforming the refer-

ence image of a DIC speckle pattern synthetically, using the FEAmesh and displacements [16, 17, 18].

The synthetically deformed images can then be processed with DIC using the same DIC settings as

the experimental results, ensuring that both sets of data have the same filtering, spatial resolution,

and strain formulation, while also avoiding additional interpolation steps. In addition, some pattern-

related image artefacts, such as saturation, aliasing and lightning issues, may be easier to distinguish

from actual model problems [17].

The goal of this work is to identify the Swift hardening law parameters of the DP600 steel by

simulating a tensile test on a heterogeneous dogbone specimen with non-constant section [19] under

uniaxial and quasi-static loading conditions up to rupture. The numerical results were used to gen-

erate synthetic images that were then processed by DIC and used as a reference in the identification

procedure. The material parameters were identified using a FEMU approach, with a cost function that

describes the difference between the reference and iterative numerical results, including the strain

fields and load. Two approaches were tested: (i) directly comparing the reference with the FEA re-

sults, referred to as the FEA methodology and (ii) using DIC-levelled FEA data in the comparison

with the reference, by iteratively generating synthetically deformed images and further processing

them with DIC with the same settings used on the reference, referred to as the virtual experiment (VE)

methodology.

Methodology

Tensile Test and Numerical Model. In this work, a virtual test was carried out on a heterogeneous

dogbone specimenwith non-constant section [19] under uniaxial tensile loading conditions. The speci-

men geometry and boundary conditions of the tensile test are shown in Fig. 1. This specimen geometry

offers a heterogeneous strain field across a wide region, although the gradient of deformation is mostly

along the y-direction [19].
A finite element analysis (FEA) model was implemented in ABAQUS/Standard software [20]

assuming plane stress conditions. Moreover, the four-node plane stress element (CPS4R) is used and

themesh is defined as regular, with a total of 858 elements. A user-definedmaterial subroutine, Unified

Material Model Driver for Plasticity (UMMDp) [21], is used to model the material behaviour. The

boundary conditions were imposed as displacements along the y-direction on the top boundary of

the specimen and fixed as 0 on the bottom boundary. The test was conducted until the failure of the

specimen, with a total of 10 time stages.

Material and Constitutive Model. The material used in this study is the DP600 steel, and the con-

stitutive model chosen assumes the following considerations: (i) isotropic linear elastic behaviour

according to Hooke’s Law, (ii) isotropic hardening described by Swift law σ = K(ε0 + ε̄P)n and (iii)
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Fig. 1: Tensile test setup regarding the specimen geometry and boundary conditions.

anisotropic behaviour described by Yld2000-2d criterion for plane stress conditions. The goal of this

work is to identify the material constitutive parameters related to the hardening behaviour. Therefore,

the linear elastic parameters are fixed during the identification procedure. The modulus of elasticity

(E) and the Poisson’s ratio (ν) are assumed to be 210 GPa and 0.3, respectively. The constitutive pa-
rameters of the Yld2000-2d criterion are also known during the iterative process and assumed as the

reference values [22, 23]: α1 = 1.011, α2 = 0.964, α3 = 1.191, α4 = 0.995, α5 = 1.011, α6 = 1.018,
α7 = 0.977, α8 = 0.935, α = 6. The Forming Limit Diagram (FLD) was used as the rupture criteria,

and the Swift law material parameters were calibrated, totaling three parameters to be identified. The

reference Swift law parameters for the DP600 steel [22, 23] are presented in Table 2.

Synthetic Images. The reference numerical results, including the mesh and displacement fields, were

used to generate synthetic images based on a real speckle pattern image using the MatchID FE De-

formation module [24], which were then processed by DIC. The goal of this approach is to simulate a

real experiment in which the experimental results are obtained using the DIC filter.

In the FEMUmethod, the main goal is to match the iterative numerical results to the experimental

data, which is usually processed by DIC. However, several inconsistencies must be addressed, such as

different coordinate systems, data locations, strain formulations, spatial resolutions, and data filtering.

To address these issues, the iterative numerical results are used to synthetically deform the reference

image of a real DIC speckle pattern, resulting in a set of synthetically deformed images. Afterwards,

the synthetically deformed images can be processed with DIC using the same DIC parameters as

the experimental images, ensuring that data filtering, spatial resolution, and strain formulation are

consistent across both data sets. Furthermore, since this approach uses a real image of a speckle pattern,

the experimental error sources are also included in DIC-levelled FEA data. As a consequence, pattern-

related image artefacts like aliasing, lightning issues, and saturation can be easily distinguished from

model flaws [17]. Fig. 2 shows a diagram of the VE methodology, including the comparison between

the reference and VE results.

Digital Image Correlation. Using the MatchID software [24], the subset-based 2D-DIC technique

was used to measure the displacements and strain fields across the entire region of interest (ROI) of the

specimen. The selection of the DIC parameters set is critical and influences the results. This selection

was performed using MatchID Performance Analysis module [24], with different sets of parameters
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Fig. 2: Diagram of the VE methodology.

combinations for two selected stages (stage 7 and 10). A total of 192 analyses were carried out, using

Affine/Quadratic subset shape functions, bilinear Q4/biquadratic Q8 strain interpolation, subset sizes

ranging from 9 to 57 pixels (6 pixels increment), a fixed step size of 5 pixels and strain window sizes

ranging between 5 and 35 data points (6 data points increments) which relates to a virtual strain gauge

(VSG) size varying from 35 to 227 pixels.

The signal measured for the strain component on the y direction was compared to the VSG size for a

central point on the specimen, where the most strain gradients are expected. It should be noted that the

reference image used to generate the synthetic images was captured with a real camera in the experi-

mental conditions and, therefore, the noise from the experimental setup, such as lightning issues and

camera noise, is also included in the synthetic images. With this in mind, a balance between accuracy

and spatial resolution must be found. Therefore, the selected set of settings is within a convergence

band of DIC settings, where an increase in VSG and loss of spatial resolution have no noticeable effect

on the measured signal. The 2D-DIC parameters used in this study are listed in Table 1.

Finite Element Model Updating Technique. The material constitutive parameters are identified us-

ing the FEMU approach. In this technique, an optimisation procedure is used to iteratively update

the unknown material parameters set in order to minimize a cost function that reflects the differences

between the reference DIC measurements and FEA results. In this work, two different approaches

are investigated: (i) directly comparing the FEA results to the reference measurements (FEA method-

ology) and (ii) iteratively generating DIC-levelled FEA results and comparing them to the reference

(VE methodology, as represented in Fig. 2). The MatchID FE Validation module [24] is used in the

DIC-levelled FEA approach to process the iteratively generated synthetic images with DIC, using the

same setting parameters and ROI as in the reference analysis. Fig. 3 shows a flowchart describing the

parameter identification process using FEMU for the FEA and VE methodologies. The flowchart is

separated into three main parts: (i) the generation of the reference virtual experimental strain fields

and load data (see Fig. 3.a), (ii) the iterative process while using the FEA methodology (see Fig. 3.b)

and (iii) the iterative process with the VE methodology (see Fig. 3.c).

The cost function used in this work describes the difference in strain fields and load between the

reference and the iterative numerical results and is written as:
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Table 1: 2D-DIC settings used for the full-field measurements,

using MatchID software [24].

2D-DIC setting parameters

Camera Flir Blackfly BFS-U3-51S5M-C

Focal length 12.5 mm

Image resolution 2448×2048 px2

Camera noise 0.48% of range

Working distance 251 mm

Image conversion factor 0.05039 mm/px

Speckle pattern Numerically generated

Average speckle size 3 px

Correlation criterion ZNSSD

Interpolation Bicubic spline

Subset shape function Quadratic

Subset size 21 px

Step size 5 px

Image pre-filtering Gaussian, 5 px kernel

Strain window size 11

Strain interpolation Bilinear Q4

Strain convention Green-Lagrange

Displacement noise-floor 0.009 px, 0.446 µm
Strain noise-floor 1.246×10−4

f (χ) =
1

nt

nt∑
i=1

 1

3np

np∑
j=1

[(
εnumxx (χ)− εexpxx

εexpmax

)2

+

(
εnumyy (χ)− εexpyy

εexpmax

)2

+

(
εnumxy (χ)− εexpxy

εexpmax

)2
]
j

+

(
F num (χ)− F exp

F exp
max

)2


i

, (1)

where χ is the unknown material parameters set, nt and np are the total number of time steps and

full-field measurement data points, respectively. εxx, εyy and εxy are the different components of in-

plane strain fields and F is the load. The superscripts ”num” and ”exp” represent the numerical and

reference virtual experimental data, respectively, while the subscript ”max” refers to the maximum

value of the given component.

Using the ScyPy Python library [25], the Levenberg–Marquardt method, which is a gradient-based

algorithm, was implemented.

Results and Discussion

The differences between the reference and iterative strain measurements and load results are min-

imised, with the optimisation variables being the constitutive parameters of the Swift law. Two identi-

fication runs with differing initial sets of parameters were performed for both methodologies described

in this study. Table 2 lists the reference Swift law parameters for the DP600 steel [22, 23], the lower

and upper bounds for each parameter during the identification process, the initial set of parameters

used for each identification run, the cost function value, the identification results, including the rel-
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Fig. 3: Flowchart describing the parameter identification process using FEMU for the FEA and VE

methodologies: (a) generation of the reference virtual experimental strain fields and load data, (b) the

iterative process of the FEA methodology and (c) the iterative process with the VE methodology.

ative error, and the computational time required. The Latin hypercube sampling (LHS) method was

used to generate the initial set of parameters for both runs.

The results show a significant improvement in the accuracy of the parameters identified when us-

ing the VE methodology, with a maximum relative error of 0.16% for the most accurate identification

run (run 2), whereas the maximum relative error for the FEA methodology is 28.48% for the same

initial set of parameters. However, the increase in the identification accuracy comes at the expense of

the increased computational time required for the VE methodology. The results also show a notable

influence of the initial set of parameters on the identification results, possibly due to a local minimum

finding. Nevertheless, the results show that in the worst identification run (run 1), the VE methodol-

ogy proved to be more accurate in the identification of the constitutive parameters, except for the ε0.
Moreover, except for the first identification run with the FEA methodology, the ε0 is the parameter

with the largest relative error. Furthermore, for the run 2 of the FEA methodology, the cost function

value for the identified parameters was lower than the cost function calculated with the reference pa-

rameters. This result is the consequence of comparing data with different filtering, spatial resolution,

and formulation, as well as the inherent interpolation errors, and therefore highlighting the importance

of a fair comparison in the FEMU approach. Figure 4 shows the convergence study of the identified

parameters, cost function value, strain and force terms values throughout the identification process for

the best identification run of each methodology. The value of the strain term is defined as the normal-

ized sum of all strain components, whereas the value of the force term is defined as the normalized
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Table 2: Reference set of parameters, lower and upper bounds, initial set of parameters,

computational time, cost function value and identification results, including the cost relative

error.

K [MPa] ε0 n Cost function

Lower bound 500.00 0.000001 0.000001 -

Upper bound 1500.00 0.010000 0.400000 -

FEA methodology

Reference parameters 979.46 0.005350 0.194000 1.640 × 10−4

Run 1 - CPU time: 34 minutes (1.00 rel. time)

Initial parameters 1151.17 0.003600 0.000024 2.811 × 10−1

Identified parameters 867.75 0.010000 0.000001 1.883 × 10−1

Relative error [%] 11.41 86.92 99.99 -

Run 2 - CPU time: 36 minutes (1.06 rel. time)

Initial parameters 708.51 0.005730 0.218000 8.853 × 10−2

Identified parameters 968.83 0.003800 0.187000 1.567 × 10−4

Relative error [%] 1.09 28.48 3.81 -

VE methodology

Reference parameters 979.46 0.005350 0.194000 1.055 × 10−9

Run 1 - CPU time: 198 minutes (5.82 rel. time)

Initial parameters 1151.17 0.003600 0.000024 3.093 × 10−1

Identified parameters 993.86 0.010000 0.207577 2.848 × 10−5

Relative error [%] 1.47 86.92 7.00 -

Run 2 CPU time: 287 minutes (8.44 rel. time)

Initial parameters 708.51 0.005730 0.218000 8.830 × 10−2

Identified parameters 979.15 0.005340 0.194000 1.680 × 10−8

Relative error [%] 0.03 0.16 0.06 -

sum of the load results.

The convergence study shows that the cost function value for the VE methodology is significantly

lower than for the FEA methodology. This difference is mainly due to the accurate strain term min-

imisation, as both data sets used in the comparison are processed by DIC, ensuring that discrepancies

between FEA and DIC data are addressed. It can also be seen that the major differences rely on the

strain fields comparison’s evolution, as expected due to the methodology here introduced.

Figure 5 compares the Swift hardening law plots for the reference and identified parameters of the best

identification run for each methodology (run 2 for both methodologies). When compared to the ref-

erence parameters, the identified parameters are accurate. Even the values for yield stress are slightly

different (σFEA
0 = 341.71MPa vs σref

0 = σVE
0 = 355.00MPa), these differences are imperceptible in the

hardening curve. Nonetheless, the VE methodology proved to be more accurate in the identification

process, which might become even clearer when using more complex constitutive models.

Conclusions

This study investigated an inverse identification technique based on FEMU by reconstructing both

numerical and experimental strain fields with the same DIC filtering, as well as comparing it to the

traditional FEMU approach that compares directly DIC and FEA results. Both approaches were used
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in the identification of Swift hardening law parameters of DP600 steel, using a virtual uniaxial tensile

test on a heterogeneous dogbone specimen. Although the strain hardening parameters can be identified

using a standard tensile test, this study focused on the effect of using the VE methodology. The results

show a significant improvement in the identification accuracy when using the DIC-levelled FEA data

Fig. 4: Evolution of the identified parameters, cost function value, strain and force terms values

throughout the identification process, for the best identification run of each methodology.

Fig. 5: Comparison between the Swift hardening law using the reference and identified parameters

for the best identification run of each methodology.
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in the identification procedure mainly due to the accurate minimisation of the differences between the

strain results. However, this improved accuracy comes at the expense of increased computational time.

The results also show a strong influence of the initial set of parameters on the calibrated parameters.

In future work, the VE methodology can be used to identify the constitutive parameters of more

complex constitutive models using other heterogeneous test configurations, allowing all material pa-

rameters to be identified using a single test configuration. Moreover, the VE methodology can be

further compared to recent studies that use an alternative approach [26]. In this approach, the FEA

displacements are interpolated to the DIC data points, then the strain window method is used to derive

the strains. This method is consistent concerning the strain computation, yet does not account for the

correlation algorithm.
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