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Abstract. The process of calibrating the material parameters of a constitutive model has
inherent uncertainty sources. These can lead to inadequate material behavior characterization
and, consequently, errors in the numerical simulations. A robust mechanical test is necessary
for accurate material mechanical characterization. In this work, it is relatively quantified the
uncertainties of the parameter identification of the Swift hardening law and the Y1d2000-2d
yield function using Digital Image Correlation (DIC) and a DIC-levelled approach. The levels
of uncertainty are calculated with a derivative-based local method, having into consideration the
Karush-Kuhn-Tucker (KKT) conditions for optimization problems. The mechanical test used
for the parameter calibration was an optimized interior notched specimen that presents several
strain and stress states simultaneously. The synthetic images were generated based on the
numerical data, and the strain fields were accessed using DIC techniques. It was concluded that
the step size is the DIC parameter that most influences the material parameter identification.

1. Introduction, framework and literature review

Nowadays, non-homogeneous mechanical tests came to replace the conventional tests in material
mechanical characterization and constitutive parameters identification. These tests, called
heterogeneous mechanical tests in this paper, present several strain states simultaneously that
can be measured using optical techniques, such as DIC. This large data acquisition can then
feed an inverse analysis for parameter identification, such as the Finite Element Model Updating
(FEMU) method. Yet, it is of utmost importance to estimate the errors and uncertainties
of these identifications. The quantification of the associated errors and the influence of
chosen experimental or numerical parameters are essential for parameter identification and,
consequently, the accurate simulation and engineering decision making. The DIC procedure
alone presents a vast number of sources of uncertainty, namely, the setup misalignment, the
sample and camera motion, the air turbulence, the image quality, the setup calibration, the
speckle size and shape, the illumination, the image resolution and noise, the aperture, the
exposure, the lens distortions, the coordinate system, the correlation for the displacement
measurements and the strain and virtual strain gauge (VSG) analysis. Some of these have
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been evaluated in [1, 2, 3]. Moreover, the material parameter identification itself produces error
propagation since it usually compares experimental data measured with optical techniques and
numerical data [4]. So, when using optical cameras to measure displacement fields, it is possible
to link image noise to displacement uncertainties, and the latter ones with material parameter
fluctuations [5]. Several studies have identified material parameters using FEMU [6, 7, 8, 9, 10].
Also, for model calibration, the Virtual Fields Methods (VFM) is often used, as in [11, 12, 13, 14].
Nevertheless, the vast majority of the mentioned studies did not account for uncertainty
measurements in the parameter identification.

The present work aims at quantifying the uncertainties in material parameter identification.
Uncertainties in a system can be quantified using probabilistic approaches, such as Monte Carlo
simulations, importance sampling, perturbation methods, polynomial chaos expansion (PCE),
or non-probabilistic approaches, such as interval analysis and Fuzzy theory [15]. However, the
theories and methodologies for uncertainty propagation and inverse uncertainty quantification
are computationally expensive and increase dramatically with the dimensionality of the problem
(i.e. the number of input variables and/or the number of unknown parameters). Moreover, these
suffer from identifiability issues, i.e. multiple combinations of unknown parameters can yield
the same prediction, being different parameters indistinguishable. Therefore, knowing that an
identification procedure in plasticity can take up to hours, an expedited method is required.
Here, considering that the identification problem is solved using optimization techniques and
when using virtual experiments the global minimum is known, the KKT conditions [16] can
be used for uncertainty quantification and clearness of solution. This approach substantially
reduces the computational time.

The identification regarded is a FEMU DIC-levelled technique as in [17], which was already
employed with a heterogeneous test in [18]. This FEMU technique compares both the
experimental and numerical strain fields using the DIC subset-based method for the strain
measurements, minimizing the error between the two. The mechanical test that feeds the FEMU
is a heterogeneous test proposed in [19], which was originated by a shape optimization design
approach based on a heterogeneity indicator. The constitutive model under consideration is the
Swift hardening law and, for the anisotropy behavior, the Y1d2000-2d yield function. The sources
of uncertainty here analyzed are the subset size, step size and strain window size. Furthermore,
the uncertainty technique used is based on the perturbation of the sources of uncertainty and
its derivative quantification.

The paper is divided into four main sections. In Section 2, the methodology and
implementation, used to quantify the uncertainties of the material parameter identification,
are explained in detail. It starts by a simplification of the material calibration problem having
in consideration theoretical concepts of optimization problems. The uncertainty technique is
described along with (i) the identification problem itself, (ii) the mechanical test in consideration,
(iii) the material under analysis, (iv) the simulation and strain calculation and (v) the analyzed
sources of uncertainty. In Section 3, the calculated levels of errors in each material parameter
and due to each source of uncertainty are presented and discussed. Finally, Section 4 presents
the main conclusions.

2. Methodology and implementation
2.1. Uncertainty quantification and problem approach
Model calibration with a large number of material parameters is an optimization problem with a
large number of optimization variables that requires severe computational efforts. Furthermore,
uncertainty quantification of this type of problem is even more time-consuming. Thus, a
simplification of the problem is necessary.

Having into consideration that the identification of material parameters is a non-linear
unconstrained optimization problem, the problem’s solution satisfies the KKT necessary
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conditions [16]. These are first-order necessary conditions for a solution to be optimal. This
means that for a cost function f and the optimum solution z* of the problem, the stationary
KKT condition has to be satisfied and can be written as follows:

Vf(z*)=0. (1)

In theory, for a continuous cost function f without the presence of noise, these conditions are

f)

Figure 1. Illustration of the KKT conditions in theory and with a noisy function.

perfectly verified. The partial derivative of the cost function in relation to the optimization
variable in the optimal solution is equal to zero (see f in Figure 1). Yet, when f; suffers some
kind of transformation fo = ¢g(f1) and shows a noisy behavior, the gradient can become different
from zero (see f2 in Figure 1). This transformation is a possible source of errors that must be
taken into consideration. Therefore, the level of noise and uncertainties can be evaluated by
means of the KKT conditions and it is assumed that the levels of uncertainties increase with
the deviation to the KKT conditions.

Assuming that the equality in Equation 1 is verified, it is possible to analyse specific sources
of uncertainty. These levels of uncertainty can be estimated with the derivative-based local

method that can be written as:
o (0f

for a 0 representing a vector of analysed sources of uncertainty. Although not yet demonstrated
as an accurate method for uncertainty analysis, this approach can be used as a relative method
and as a support tool for engineering decision making.

2.2. Identification problem under analysis
The identification approach adopted was the FEMU that is driven by the minimization of the
optimization function written as:
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where x is the vector of the unknown material parameters, F' is the load value and ¢ are
strain components of the mechanical test. The superscripts “num” and “exp” refer to the
numerical data obtained iteratively during the optimization process and the experimental data,
respectively. The number of time instances is ny and the number of in-plane measurement points
is np. Fmax is the maximum load value and emax is the maximum strain value of all in-plane
components of the test.

Applying the methodology mentioned in Section 2.1, the partial derivatives of the cost
function ¢ with respect to the material parameters x that should satisfy the KKT conditions

and Equation 1 can be calculated as:
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where the partial derivatives of each numerical strain component (68%;1(90) and of the load

value (‘W) with respect to the material parameters can be quantified using the finite

difference method (FDM).

2.8. Heterogeneous mechanical test in consideration

An innovative heterogeneous mechanical test proposed in [20, 19] was the base to generate
synthetically deformed images that were used as reference virtual material data in the approach,
as well as used for the iterative analysis. The geometry of the heterogeneous specimen is depicted
in Figure 2. This interior notched specimen was designed by shape optimization, based on the
maximization of the heterogeneity. The heterogeneity of the test was evaluated using several
heterogeneity indicators that favor solutions that exhibit several strain states simultaneously
with large magnitudes. The shape of the interior notch follows a third-degree spline defined
by a total of 20 points. This specimen has 2 symmetries, ensuring the balance during the
experimental testing. The specimen is tested under uniaxial loading conditions up to rupture.

2.4. Constitutive model and material definition

Hooke’s law was used to describe the linear elastic material behavior of DP600 steel, with a
modulus of elasticity of 210 GPa and Poisson’s ratio of 0.3. The Swift law [21] was defined for
the hardening behavior, and the Y1d2000-2d yield criterion [22] for the plastic anisotropy. The
reference material parameters used in the virtual experiment of the DP600 steel with 0.8 mm
thickness are presented in Table 1. The rupture criterion implemented was based on the FLD
(Forming Limit Diagram) [23]. The exponential of the Y1d2000-2d function nominated as a is
equal to 6 since the material has a BCC type of crystal structure.

2.5. FEA and DIC test simulation: DIC-levelled approach
To model and analyze the heterogeneous mechanical test described in Section 2.3, both the
Abaqus [24] and MatchID 2D [25] software were used. A DIC-levelling approach was used to
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Figure 2. Geometry, dimensions (in mm) and loading conditions of the heterogeneous
mechanical test used in the parameter identification approach. Coordinates of the spline
considering the origin located in the center of the specimen, in the first quadrant.

Table 1. Reference material parameters of the Swift hardening law and YId2000-2d yield
criterion used for the virtual experiment [23].

Swift law K [MPa| €0 n
979.460 0.00535 0.194
Y1d2000-2d oy %) Qs oy as Qg ar Qs a

1.011 0.964 1.191 0.995 1.010 1.018 0.977 0.935 6

determine the strain gradients. This was already tested in [4] and implemented in a FEMU
method in [17, 18]. First, for the FE analysis, the 2D test was conducted in Abaqus under plane
stress state conditions, using 2975 CPS4R elements. The material behavior was implemented
using the UMMDp developed by JANCAE (Japan Association of Nonlinear CAE) [26]. A
displacement was imposed in the top edge of the specimen, in the vertical direction, up to
rupture. The bottom edge of the specimen was kept fixed. A total of 19 time increments
presenting elastic and plastic regimes of deformation were used to extract the nodal coordinates
and displacements of the mesh. Secondly, these results were used to synthetically deform a
speckle pattern to be analyzed using the DIC method. The pattern was numerically generated
with 3 px dot size, to avoid aliasing [27] and printed in true dimensions. The hardware and DIC
analysis parameters are shown in Table 2. Moreover, a performance analysis was conducted to
access the adequate DIC parameters, which are presented in the same table.

2.6. Analyzed sources of uncertainty

Several sources of uncertainty could be evaluated since both the FEA and DIC approaches can
influence the outcome of the problem. In the present paper, only the subset size, step size
and strain window size were analyzed and discussed. These are the elements of the vector 6
in Equation 2. These are parameters from the DIC analysis that directly influence the strain
gradients observed in the specimen and, thus, are very important in parameter identification
problems. In order to determine the result of Equation 2, a perturbation of approximately
20 % was applied for each of the parameters that were considered the most suitable for the
DIC analysis, after the DIC performance analysis. Although it seems an excessively large value
for perturbation to determine the derivatives through the FDM, this is because these DIC
parameters are integers that can only vary within specific values and intervals. Therefore, the
subset sizes of 21 px and 25 px, the step size of 5 px and 6 px and the strain window size of 11
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Table 2. Hardware and DIC analysis parameters using MatchID 2D software [25].

Parameters

Camera Flir Blackfly BFS-U3-51S5M-C
Image resolution [px?] 2448 x 2048

Focal length [mm|] 12.5

Average speckle size [px] 3

Image filtering Gaussian, 5 px kernel
Image conversion factor [mm/px] 0.07241

Subset size [px] 21

Step size [px] 5

Subset shape function Quadratic

Matching criterion ZNSSD

Interpolation Bi-cubic spline

Strain window [data points] 11

Strain formulation Green-Lagrange
Post-filtering of strains Spatial

Displacement noise-floor [px] 0.009

Strain noise-floor [mm/mm)] 1.209 x 10~4

and 13 data points were evaluated.

3. Obtained results and analysis

First, the size of the material parameter perturbation was analyzed in order to better determine
the partial derivatives of the FEMU cost function in relation to the material parameters
calculated with Equation 4. Perturbation sizes of 10%, 5%, 1% and 0.1% were studied. The
results are presented in Figure 3 and they revealed a similar tendency for each parameter. Ideally,
a smaller perturbation would be more adequate for the FDM. Though, the 0.1% perturbation
shows discrepancies in some anisotropy parameters compared to the other perturbation sizes.
Thus, 1% material parameter perturbation was chosen for the following analysis since it is the
smaller perturbation that is consistent in relation to the others.

Completing the calculus according to the methodology present in Section 2, with a
perturbation of 1 % in the material parameters, it was possible to investigate the influence
of each material parameter in the FEMU DIC-levelled problem and the verification of the KKT
conditions.

Figure 4 shows the absolute value of the partial derivatives of the cost function with respect
to the material parameters (as in Equation 4) in two sets of material parameters. The first is the
optimum set of material parameters. Theoretically, its derivatives should be zero, satisfying the
KKT conditions. Yet, practically, some of the derivatives are larger than zero. This quantifies
the inherent errors caused by the interpolations, transformations, filters and noise and should
be accounted for in the interpretation of the following results. The second set of material
parameters is obtained randomly. It is presented to understand if the parameter influences the
identification process. This is because when starting a FEMU identification, the initial set of
material parameters usually is different from the optimum set and each parameter should show
influence in the cost function for the optimisation process to flow. If a material parameter is not

activated in the mechanical experiment, the value of ‘g—i‘ would be zero and the methodology
presented could not lead to any conclusions. It can be observed that all the parameters are
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Figure 3. Absolute value of the partial derivatives of the cost function () with respect to the
material parameters (x) with different perturbation sizes.

activated and, thus, influence the identification process. Yet, some present a smaller influence in
the FEMU cost function, and, consequently, their derivatives are closer to zero with the optimum
set of material parameters. These can present a smaller sensitivity in the methodology. The
material parameters of the random set can be observed in Table 3.

ox
100 :
1072 1
1074 .
1075 F 1
K €0 n [e%1 [ Qs Qy as ag a7 ag
H Optimum set of material parameters I Random set of material parameters

Figure 4. Absolute value of the partial derivatives of the cost function () with respect to the
material parameters (x) in the optimum and random sets of parameters.

The influence of each source of uncertainty in the problem can be seen in Figure 5. It
can be stated that a7 and ag are more sensitive to uncertainties. This can be both from the
propagation of errors that are observed in Figure 4 and from the influence of each studied source
of uncertainty (subset, step and strain window sizes). Furthermore, the step size is the analyzed
source of uncertainty that largest influences the FEMU DIC-levelled parameter identification.
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Table 3. Random set of material parameters of the Swift hardening law and Y1d200-2d yield
criterion used to determine ‘g—;ﬁ) in Figure 4.

Swift law K [MPa] £0 n
960.511 0.00559 0.189
Y1d2000-2d oy Q9 Qag Qy as ag a7 Qag a

1.123 1.310 0.899 0.905 0974 1.200 1.076 0.869 6

The subset and strain window sizes have a similar impact on the problem and in the search for
the identification solution.

() () o

107° R
4,
1077 1
2
1079 1
— 0
K e n o as ag a4 as ag ap Qg Subset Step Strain
size size window

size

I Subset size [ Step size [ 1 Strain window size

Figure 5. Influence of the subset size, step size and strain window size in each material
parameter and in the overall parameter identification approach.

4. Main conclusions

In the present paper, a methodology was developed to quantify the uncertainties in material
parameter identification, using the assumptions of the KKT necessary conditions of non-linear
unconstrained optimization problems. This way it was possible to simplify the identification
problem and estimate the uncertainties with less computational effort, leading to faster
engineering decision making. The calibration problem considered was the FEMU DIC-levelled
approach and the uncertainty technique was the derivative-based local method by means of the
finite difference method. The mechanical test used in the inverse identification process was an
interior notched specimen for uniaxial loading conditions that presents several strain and stress
states simultaneously. The calibration of the Swift hardening law and Y1d2000-2d yield function
was evaluated. The sources of uncertainty analyzed were the subset, step and strain window
sizes.

It was concluded that the obtained errors in the material parameter identification using a
FEMU DIC-levelled technique were originated by the propagation of errors of the measurements,
interpolation and discretization of the problem itself and from the influence of the sources of
uncertainty. Moreover, the step size has a larger impact on the identified material parameters,
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compared to the subset size and strain window size for the studied speckle pattern and strain
gradients. Special attention must be paid when choosing the DIC settings for an inverse
identification of material parameters since they have a direct effect on the strain gradients
and measurements and also a different impact in the inverse identification of the material
parameters.
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