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Abstract. Nowadays, virtual predictions are essential in the design and development of new engineering parts. A critical aspect for virtual predictions 

is the accuracy of the constitutive model to simulate the material behavior. A state-of-the-art constitutive model generally involves a large number of 

parameters, and according to classical procedures, this requires many mechanical experiments for its accurate identification. Fortunately, this large 

number of mechanical experiments can be reduced using heterogeneous mechanical tests, which provide richer mechanical information than classical 

homogeneous tests. However, the test’s richness is much dependent on the specimen's geometry and can be improved with the development of new 

specimens. Therefore, this work aims to design a uniaxial tensile load test that presents heterogeneous strain fields using a shape optimization 

methodology, by controlling the specimen's interior notch shape. The optimization problem is driven by a cost function composed by several indicators 

of the heterogeneity present in the specimen. Results show that the specimen's heterogeneity is increased with a non-circular interior notch. The 

achieved virtual mechanical test originates both uniaxial tension and shear strain states in the plastic region, being the uniaxial tension strain state 

predominant. 

 
Keywords: heterogeneity; mechanical testing; shape optimization; finite element method; strain measurements, material behavior; design by optimization 

 

1 Introduction, Framework and Literature Review 

A competitive company needs to produce faster, with better quality and with the least waste of resources. The use of numerical 

simulations for the manufacturing virtualization can improve its productivity. For an accurate material behavior prediction, it is 

often required a complex material constitutive model and the identification of the respective material parameters. Currently, 

classical tests are the standard in the prediction of material macroscopic behavior. However, several of these mechanical 

experiments are required for the identification process, originating a very time and cost consuming process. Besides, these provide 

the stress and strain results for a fixed stress state, which do not resemble the complex stress and strain fields originated in many 

manufacturing procedures [1]. More complex mechanical tests, providing different stress and strain fields are required for a better 

material parameter identification and thus, a more precise material behavior prediction. Complexity can be introduced thanks to 

non-standard specimen geometries, complex loading conditions or a combination of both. 

Many scientific advances on the specimen's geometry were based on trial and error attempts on uniaxial and biaxial loadings, 

generating heterogeneous strain fields. These were mainly based on uniaxial tests on perforated specimens [2], notched specimens 

[3], shear-like tensile zones on samples [2] and other more complicated shapes [4, 5]. Regarding the biaxial loading, it was 

intensively studied the cruciform shaped sample with differences on some geometrical parameters [6, 7] as well as introducing 

perforations[8, 9]. Concerning the optimization approaches, interesting studies have been made using shape optimization of the 

specimen outer boundaries in [10] and topology optimization in [11, 12]. 

The success of heterogeneous mechanical test for the material parameter identification was proved in [1–4, 6, 9, 10, 13–15]. It 

was concluded in [1, 6, 16] that parameter identification from heterogeneous specimens outperforms the one using classical 

homogeneous tests, such as uniaxial tensile test. Experimental procedures performed in [2, 11, 17–19] on this type of specimens 

also demonstrated its reliability. Furthermore, it was proved that heterogeneous mechanical tests can reduce the number of the 

required experimental classical tests for the material parameter identification [9]. 

http://creativecommons.org/licenses/by/4.0
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The work developed in [10, 20–22] generated an experimentally validated butterfly-type specimen for uniaxial loading using 

shape optimization of the exterior contours. Nevertheless, the boundaries irregularity of the specimen generates problems related 

to the slipping of the grips and difficulties in the strain measurements near the edges.  

The present work aims to design a uniaxial tensile load test that presents heterogeneous strain paths using shape optimization 

methods. The design universe is focused on the specimen's interior notch shape. The outer boundaries of the sample are rectangular, 

which makes the testing procedure similar to a standard tensile test, reducing the slipping of the grips. The proposed solution is 

expected to reduce the number of required mechanical tests and, consequently, acquire higher quality on numerical simulations of 

the materials due to better calibration of complex constitutive models. 

2 Methodology and Implementation 

2.1 General Methodology 

An iterative optimization process was used to design the heterogeneous specimen, as depicted in Fig. 1. The process starts by 

defining the design variables of the optimization procedure. For the definition of the specimen shape, different curve 

parameterization can be used. The specimen exterior contours are established and constant during the process. The uniaxial tensile-

load test is simulated until rupture and the resulting strain and stress fields are evaluated using a heterogeneity criterion, which rates 

the strain field of the experiment by quantifying the mechanical information. This criterion is used as objective function of the 

design variables. Thus, this optimization procedure searches for a shape of the interior notched specimen that generates the largest 

number of heterogeneous strains and stress states during the test until rupture. 

 

Fig. 1. Iterative process methodology for the design of the heterogeneous specimen.  

2.2 Problem Formulation 

The iterative process aims to maximize the heterogeneity of the specimen, by varying the shape of the curve. The interior 

notched curve is defined by 𝑛 control points, as shown in Fig. 2a. Besides, one fixed point is inserted to give more flexibility to the 

curve, having in consideration the specimen’s weight/width ratio analysis that was performed and the assumption of the scalability 

of the specimen geometry. Also, two extra points are inserted to assure the C1 spline’s continuity and the curve smoothness in the 

symmetries. The location of the control points are the design variables. Also, for reducing the number of the optimization variables, 

only the radial coordinates of the curve were considered. The angular space was equally split for the number of control and fixed 

points and a search space was defined, as shown in Fig. 2b. 
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(a)                                                                  (b) 

Fig. 2. Representation of the specimen perforation and (a) its curve control points and (b) their search space. 

Therefore, the aim is to find the vector of optimization variables 𝐫, that maximizes the specimen's heterogeneity 𝐻, having in 

consideration the forces equilibrium of the test’s numerical analysis, until rupture (𝐊 ∙ 𝐮 = 𝐅). The problem can be formulated as: 

maximize       𝐻(𝐫, 𝐮)

𝑟 ∈ ℝ𝑛                          
                                                                      subjected to        𝑟𝑖

min ≤ 𝑟𝑖 ≤ 𝑟𝑖
max, 𝑖 = 1, 2. . . , 𝑛                                   

                  𝐊 ∙ 𝐮 = 𝐅.                   

     (1) 

2.3 Solution’s Evaluation 

To analyze the mechanical test's richness, the strain or the stress states can be used. The strain states are defined using the minor 

and major strain ratio 
𝜀2

𝜀1
, whereas the stress states are calculated concerning the ratio between the minor and major stresses 

σ2

σ1
. The 

level of strain reached during the test is also an important factor, and it is intended to go beyond the levels attained in classical 

tensile tests over a large area of the specimen. The equivalent plastic strain ε
p
 is a standard indicator particularly important to 

measure the level of plastic strain reached during the mechanical tests [23].  

In this investigation, three different heterogeneity indicators where analyzed. The first is an adaptation of the heterogeneity 

criterion used in [10] and is given as: 

𝐼T1 = 𝑤r1
Std(𝜀2/ 𝜀1)

𝑤a1
  +  𝑤r2

(𝜀2/ 𝜀1)R

𝑤a2
  +  𝑤r3

Std(𝜀
p
)

𝑤a3
  +  𝑤r4

 𝜀̅𝑚𝑎𝑥
𝑝

𝑤a4
  +  𝑤r5

𝐴𝑣
𝜀
p

𝑤a5
              (2) 

It has in consideration the strain state range (ε2 / ε1)R, the strain state standard deviation Std(ε2/ ε1), the equivalent plastic 

strain standard deviation Std(𝜀
p
) , the mean of each strain state maximum equivalent plastic strain and maximum equivalent plastic 

strain of the test  𝜀m̅ax
p

 and the average deformation Avεp. These terms have relative weights wr1,  wr2,  wr3,  wr4,  wr5 and absolute 

values wa1,  wa2,  wa3,  wa4,  wa5 for the terms adjustment of importance and normalization. The maximum possible value of the 

indicator is 1. For this indicator, the cost function to be minimized is CFT1 = 2 − 𝐼T1. 

The second indicator used was an adaptation of the one proposed in [12]. The original indicator was developed and used for a 

topology optimization method and considered the numerical elements' density ρ𝑒 that was here replaced by the elements' volume 

𝑉𝑒. It benefits solutions with less stress concentrations, and can be written as: 

𝐼T2 = ∏
3

∑ 𝑉𝑒
𝑛ele
𝑒=1

∑ (𝛿𝑒𝑍𝑒𝑉𝑒)
𝑛ele
𝑒=1

3
𝑠=1 ,                                (3) 

where 𝑠 denotes indexes defined in Eq. 6, corresponding to a stress state. In this case, 1, 2, and 3 indicate compression, shear, and 

tension stress states, respectively. The total element's number 𝑛ele are analysed, either under plastic or elastic deformation. The 

term 𝑍𝑒 penalizes solutions with stress concentrations and non-stressed material, given as: 
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𝑍𝑒 =
1

1+(𝑏⋅𝜎𝑒
∗)2
 ,                  (4) 

where 𝑏 is a constant for the penalization "aggressiveness" (fixed as 3) and σ𝑒
∗  is calculated as: 

𝜎𝑒
∗ =

𝜎𝑒
vm−𝜎

vm

𝜎
vm ,                   (5) 

where 𝜎𝑒
vm is the von Mises equivalent stress of element 𝑒, and  σ

vm
 is the mean von Mises equivalent stress value of all elements. 

The operator δ𝑒
𝑠  filters the elements correspondent to the 𝑠 stress state [12].  δ𝑒

𝑠  takes approximately the value of one if the element 

is in the 𝑠 stress state and zero otherwise. This is achieved via a 2D generalization of the smooth Heaviside function, being 

formulated as: 

𝛿𝑒
𝑠  =

{
 
 

 
 

1

2
(1 − tanh(𝛽(𝜀𝑒

11 + 0.75𝜀𝑒
22))), 𝑠 = 1

1

4
(1 + tanh(𝛽(𝜀𝑒

11 + 0.75𝜀𝑒
22)))(1 − tanh(𝛽(𝜀𝑒

11 + 1.5𝜀𝑒
22))), 𝑠 = 2

1

2
(1 + tanh(𝛽(𝜀𝑒

11 + 1.5𝜀𝑒
22))), 𝑠 = 3

.             (6) 

The larger is the indicator 𝐼T2, the more heterogeneous is the solution. So, the cost function to be minimized is 𝐶𝐹T2 = −𝐼T2. 

The third indicator studied was another adaptation to the indicator proposed in [12]. Instead of evaluating the stress 

concentrations, it was taking into consideration the equivalent plastic strain value of each element, using: 

𝐼T3 = ∏
3

∑ 𝑉𝑒
𝑛ele
𝑒=1

∑ (𝛿𝑒𝜀 ̅
𝑝
𝑚𝑎𝑥𝑒

𝑉𝑒)
𝑛ele
𝑒=1

3
𝑠=1 ,              (7) 

The goal of this indicator is to benefit solutions with larger ε
p
 values and strain state diversity. The remaining equation's terms 

were evaluated similarly to the indicator 𝐼T2. The cost function to be minimized is 𝐶𝐹T3 = −𝐼T3. 

3 Analysis and Results 

First, it was performed a variable dependency analysis of several parameters. These were the elements’ types CPS4, CPS4R and 

CPS8R [24], as well as the elements’ edge dimensions of 1 mm, 0.8 mm, 0.5 mm, 0.3 mm, 0.2 mm, and 0.1 mm. These elements have 

4 (CPS4 and CPS4R) and 8 nodes (CPS8R) and present complete (CPS4) and reduce integration (CPS4R and CPS8R) approaches. It 

was also analyzed the objective function using the three different heterogeneous indicators previously mentioned and the position of 

the fixed point, either in the vertical symmetry or in the horizontal one. Besides, it was tested 4, 5, 6, 8, 10, 12 and 14 curve control 

points, as well as the specimen’s height/width ratios of 5.30, 4.42, 4.08, 3.31, 2.65 and 2.21. Moreover, it was used a circular interior 

notch, an ellipse-like shape and a cross-like shaped one as the initial solution. The Nelder-Mead algorithm and a differential evolution 

algorithm were evaluated. 

As reference solution, it was established the best solution obtained out of the optimization procedure, with an initial circular interior 

notch specimen shape, with a 10 mm radius. This solution had a non-parametric finite element mesh with CPS4R elements of 0.3 mm 

along the edges. The cost function used was  𝐼T1 (Eq. 2). The reference solution was obtained using 5 curve control points, and a fixed 

point in the vertical symmetry. This specimen’s height/width ratio was 5.30, which overall refers to a specimen’s height of 265.0 mm 

and width of 50.0 mm. The optimization algorithm used was the Nelder-Mead, a direct search type. 

Afterward, the mentioned parameters were varied independently, and the optimization process completed. The parameters that 

independently originated a specimen with the best cost-function value were elements of 0.3 mm edge size and CPS4R type, a 2.65 

height/width ratio, an initial solution of an ellipse-like interior notch, 6 curve control points, a fixed point in the vertical symmetry and 

the Nelder-Mead algorithm. The solution obtained with the combined best parameters was evaluated both with  𝐼T1 and  𝐼T3, since they 

were the most interesting indicators. 

Considering the several design optimization procedures and the originated mechanical richness, the most interesting specimens 

obtained were highlighted. Those are originated using the parameters of the reference solution but changing only the height/width ratio 

to 2.65 (solution A); the second solution is obtained using the parameters of the reference solution, but the initial solution was an ellipse 

interior notch (solution B); and finally, the third solution is obtained with the combination of the best parameters that were analyzed 

independently (solution C).  All these solutions were obtained using 𝐼T1 indicator as cost function. The solutions are depicted in Fig. 3, 

along with its cost function value for each optimization’s process evaluation. The three optimization procedures show convergence 

after approximately 200 evaluations. 
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(a)                                                        (b)                                                     (c) 

Fig. 3. Cost function evaluation and best obtained solutions’ geometry for solution (a) A, (b) B and (c) C. 

Fig. 4 shows the minor and major strain and stress diagrams of the best-obtained solutions at the moment just before rupture. 

Solution A and C show very similar principal strain and stress diagrams. They show stress states around the uniaxial tension, 

uniaxial compression, and pure shear in the plastic region. Furthermore, they also present equibiaxial tension stress state but with 

smaller intensities. Solution B shows poorer strain and stress states represented in the diagrams, having a predominance of the 

uniaxial tension state. Moreover, it has some elements exhibiting uniaxial compression and pure shear in the plastic region. It is 

important to note that the compressive stresses can generate local buckling, which is not intended. This possibility should be further 

analyzed. This issue could be minimized using a constraint during the optimization process. 

Fig. 5 presents the minor and major stress (SMinSMaxRatio) and strain ratios (LEMinLEMaxRatio), von Mises stress (S, Mises) 

and equivalent plastic strain (PEEQ) at the moment just before rupture of the final achieved solutions. Since there is no PEEQ in the 

bottom and top parts of the specimens, it is expected no interference with the grips in the experimental test, except for solution A. In 

terms of minor and major strain and stress ratios, it can be noticed in all solutions that the surrounding top and bottom of the interior 

notch show shear and compression states, whereas the majority of the specimen reveals tension state. Note that solutions A and C show 

different strain states in the middle area of the specimen and not just near the interior notch border. However, they exhibit some elements 

within the plane strain state in the specimen’s top and bottom part, which might interfere with the grips in the experimental data 

acquisition. The interior notch that solution C presents looks like two holes, but it is just one. This geometry might reveal some troubles 

concerning the manufacturing of the specimen.  

4 Conclusions and Future Works 

It was developed an approach to virtually design by optimization a heterogeneous specimen. This is a symmetric specimen for 

a uniaxial tensile load test. The originated specimen can be tested using a universal tensile test machine with no need for special 

grips. It was developed a methodology to iteratively perform the numerical test and, by the means of an optimization algorithm, 

obtain the richest specimen in terms of mechanical behavior. A heterogeneity indicator was used to rank the generated solutions in 

terms of mechanical richness. There were analyzed parameters related to the numerical analysis, to the specimen’s geometry and 

to the optimization procedure. All of them demonstrated to have influence in the process and are the reason for the local minimums 

found and strain and stress states predicted errors. The best-obtained parameters were used all together so that an even better solution 

would be generated. 

Three geometries that present the best cost function value were analyzed. These specimens exhibiting a butterfly interior notched 

shape, produce uniaxial tension and pure shear states in the plastic regime, as well as uniaxial compression state mainly in elasticity. 

Besides, solutions A and C show equibiaxial and plane states within elastic deformations. None of the obtained geometries revealed 

the biaxial state. 

When using the heterogeneity indicator 𝐼T1 for comparison, it was proved that for a uniaxial tensile load test, a rectangular 

specimen with a non-circular interior notch in the center displays larger heterogeneity than a circular one. 

The reliability of the developed tests must be verified by performing the experimental test along with the material parameter 

identification. Also, a more complex constitutive model could be applied to simulate more accurately the material mechanical 

behavior. 
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Fig. 4. Minor and major strain and stress diagrams of the best obtained solutions at the moment just before rupture, for solution (a) A, (b) B and (c) C. 
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(b) 

 

(c) 

Fig. 5. Best obtained solutions’ minor and major stress and strain ratios, von Mises stress and equivalent plastic strain at the moment just before rupture, for 

solution (a) A, (b) B and (c) C. 
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